Skip to main content
Log in

Thermal decomposition of human tooth enamel

  • Clinical Investigation
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Further insight into human tooth enamel, dense fraction (TE), has been obtained by following the change and loss of CO3 2−, OH, structurally incorporated H2O, Cl, and, indirectly, HPO4 2− after TE had been heated in N2 or vacuum in the range 25–1000°C. Quantitative infrared spectroscopic, lattice parameter, and thermogravimetric measures were used. Loss of the CO3 2− components begins at much lower temperature (e.g., 100°C) than previously recognized, which has implications for treatments in vitro and possibly in vivo. CO3 2− in B sites is lost continuously from the outset; the amount in A sites first decreases and then increases above 200° to a maximum at ∼800°C (>10% of the possible A sites filled), where it is responsible for an increase ina lattice parameter. A substantial fraction of the CO3 2− in B sites moves to A sites before being evolved, apparently via a CO2 intermediary. This implies an interconnectedness of the A and B sites which may be significant in vivo. No loss of Cl was observed at temperatures below 700–800°C. Structural OH content increases ∼70% to a maximum near 400°C. Structurally incorporated water is lost continuously up to ∼800°C with a sharp loss at 250–300°C. The “sudden”a lattice parameter contraction, ∼0.014Å, occurs at a kinetics-dependent temperature in the 250–300°C range and is accompanied by reordering and the “sharp” loss of ∼1/3 of the structurally incorporated H2O. The hypothesis that structurally incorporated H2O is the principal cause of the enlargement of thea lattice parameter of TE compared to hydroxyapatite (9.44 vs 9.42Å) is thus allowed by these experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Little, M.F., Casciani, F.S.: The nature of water in sound human enamel. A preliminary study, Arch Oral Biol11:565–571, 1966

    Article  PubMed  CAS  Google Scholar 

  2. Elliott, J.C.: The crystallographic structure of dental enamel and related apatites, Ph.D. Thesis, University of London, 1964

  3. Arends, J., Davidson, C.L.: HPO4 2- content in enamel and artificial carious lesions, Calcif Tissue Res18:65–79, 1975

    PubMed  CAS  Google Scholar 

  4. LeGeros, R.Z., Trautz, O.R., LeGeros, J.P., Klein, E.: Pyrolysis of biological apatites: X-ray diffraction and infrared studies, 48th General Assembly of the International Association of Dental Research, 16–19 March 1970, New York, NY Abstract #177

  5. LeGeros, R.Z.: The unit-cell dimensions of human enamel apatite: effect of chloride incorporation, Arch. Oral Biol.20:63–71, 1974

    Article  Google Scholar 

  6. LeGeros R.Z., Bonel, G., Legros, R.: Types of “H2O” in human enamel and precipitated apatites, Calcif. Tissue Res.26:111–118, 1978

    Article  PubMed  CAS  Google Scholar 

  7. Corcia, J.T., Moody, W.E.: Thermal analysis of human dental enamel, J. Dent. Res.53:571–579, 1974

    CAS  Google Scholar 

  8. Myrberg, N.: Proton magnetic resonance in human dental enamel and dentine, Trans. R. Schs. Dent. Stockh Umea, No. 14, 3–62, 1968

  9. Myers, H.M.: Trapped water in dental enamel, Nature206:713–714, 1965

    PubMed  CAS  Google Scholar 

  10. Holager, J.: Thermogravimetric examination of enamel and dentin, J. Dent. Res.49:546–548, 1970

    PubMed  CAS  Google Scholar 

  11. Brauer, G.M., Termini, D.J., Burns, C.L.: Characterization of components of dental materials and components of tooth structure by differential thermal analysis, J. Dent. Res.49:100–110, 1970

    PubMed  CAS  Google Scholar 

  12. Emerson, W.H., Fischer, E.E.: The infra-red absorption spectra of carbonate in calcified tissues, Arch. Oral Biol.7:671–683, 1962

    Article  CAS  Google Scholar 

  13. Bonel, G., Montel, G.: Etude comparee des apatites carbonatees obtennes par differentes methodes de synthese, Reactivity of Solids, 5th International Symposium Munich 1964. Elsevier Publishing Co., Amsterdam, 1965

    Google Scholar 

  14. Elliott, J.C.: On the interpretation of the carbonate bands in the infra-red spectrum of dental enamel, J. Dent. Res.42:1081, 1963

    Google Scholar 

  15. Dowker, S.E.P., Elliott, J.C.: Infra-red absorption bands from NCO and NCN2− in heated carbonate-containing apatites prepared in the presence of NH4 + ions, Calcif. Tissue Int.29:177–178, 1979

    PubMed  CAS  Google Scholar 

  16. LeGeros, R.Z.: Effect of carbonate on the lattice parameters of apatite, Nature206:403–404, 1965

    Google Scholar 

  17. Termine, J.D., Lundy, D.R.: Hydroxide and carbonate in rat bone mineral and its synthetic analogs, Calcif. Tissue Res.13:73–83, 1973

    Article  PubMed  CAS  Google Scholar 

  18. Davidson, C.L., Arends, J.: Thermal analysis studies on sound and artificially decalcified tooth enamel, Caries Res.11:313–320, 1977

    Article  PubMed  CAS  Google Scholar 

  19. Young, R.A., Mackie, P.E., von Dreele, R.B.: Application of the pattern-fitting structure-refinement method to X-ray powder diffractometer patterns, J Appl. Cryst.10:262–269, 1977

    Article  Google Scholar 

  20. Aoki, H, Ban, T, Akao, M, Kato, K, Iwai, S: Thermal analysis of calcified tissues, Rep. Inst. Med. Dent. Eng. (Tokyo)11:25–31, 1977

    Google Scholar 

  21. Bartlett, M.L., Young, R.A.: Structural OH deficiency in tooth enamel and hydroxyapatite, Program and Abstracts of 55th General Session of the International Association for Dental Research, 23–26 March 1972, Las Vegas, Nevada, Abstract #125

  22. Dykes, E., Elliott, J.C.: The occurrence of chloride ions in the apatite lattice of Holly Springs hydroxyapatite and dental enamel, Calcif. Tissue Res.7:241–248, 1971

    Article  PubMed  CAS  Google Scholar 

  23. Bonel, G.: Contribution a l'etude de la carbonation des apatites, Thèse, L'Université de Paul Sabatier de Toulouse, France, 1970

    Google Scholar 

  24. Bonel, G., Montel, G.: Sur une nouvelle apatite carbonatée synthétique, C.R. Acad. Sci [D] (Paris)258:923–926, 1964

    CAS  Google Scholar 

  25. LeGeros, R.Z., Trautz, O.R., LeGeros, J.P., Klein, E.: Carbonate substitution in the apatite structure, Bull. Soc. Chim. France (n° special) 1712–1718, 1968

  26. Borneman-Starinkevitch, I.D.: On isomorphic substitutions in carbonate apatite, Dokl. Acad. Nauk SSR22:113–115, 1939

    Google Scholar 

  27. McConnell, D.: The problem of the carbonate apatites. IV. Structural substitutions involving CO3 and OH, Bull Soc. Fr. Mineral. Crist.75:428–445, 1952

    CAS  Google Scholar 

  28. Trautz, O.R.: Crystallographic studies of calcium carbonate phosphate, Ann. N.Y. Acad. Sci.85:145–160, 1960

    PubMed  CAS  Google Scholar 

  29. Hendricks, S.B., Hill, W.L.: The inorganic constitution of bone, Science97:255–257, 1942

    Google Scholar 

  30. Young, R.A., Bartlett, M.L., Spooner, S., Mackie, P.E., Bonel, G.: Reversible high temperature exchange of carbonate and hydroxyl ions in tooth enamel and synthetic hydroxyapatite, J. Biol. Physics (in press)

  31. Trombe, J.C., Montel, G.: Sur l'oxyapatite phosphocalcique, C.R. Acad. Sci. [D] (Paris)274:1169–1172, 1972

    CAS  Google Scholar 

  32. Trombe, J.C., Montel, G.: Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice. I. On the existence of calcium and strontium oxyapatites, J. Inorg. Nucl. Chem.40:15–21, 1978

    Article  CAS  Google Scholar 

  33. Montel, G., Bonel, G., Trombe, J.C., Heughebaert, J.C., Rey, C.: Relations entre la physico-chimies des apatites et leur comportment dans les milieux biologiques et les différent traitment industriels, Proceedings, First International Congress on Phosphorus Compounds, 17–21 October 1977, 321–346, Rabat, Maroc, L'Institut Mondial du Phosphate, Paris, 1977

  34. Gee, A., Deitz, V.R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphate, J. Am. Chem. Soc.77:2961–2965, 1955

    Article  CAS  Google Scholar 

  35. Elliott, J.C.: The interpretation of the infra-red absorption spectra of some carbonate-containing apatites. In M.V. Stack, R.W. Fearnhead (eds.): Tooth Enamel, its Composition, Properties and Fundamental Structure. John Wright & Sons, Ltd., Bristol, 1965

    Google Scholar 

  36. Herman, H., Dallemagne, M.J.: The main mineral constituent of bone and teeth, Arch. Oral Biol.5:137–144, 1961

    Article  PubMed  CAS  Google Scholar 

  37. Berry, E.E.: The structure and composition of some calcium deficient apatites, J. Inorg. Nucl. Chem.29:317–327, 1967

    Article  CAS  Google Scholar 

  38. Fowler, B.O., Moreno, E.C., Brown, W.E.: Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate, Arch. Oral Biol.11:477–492, 1966

    Article  PubMed  CAS  Google Scholar 

  39. Cant, N.W., Bett, J.A.S., Wilson, G.R., Hall, K.W.: The vibrational spectrum of hydroxyl groups in hydroxyapatite, Spectrochim. Acta27A:425–439, 1971

    Google Scholar 

  40. Montel, G., Heughebaert, J.C.: Influence of fluoride on calcium orthophosphates hydrolysis, Fluoride and Bone Symposium 2nd CEMO, 9–12 Oct 1977, 82–93

  41. Ciesla, K., Maciejewski, M., Rudnicki, R.: Thermal decomposition of calcium hydroxyapatite and solid-state reactions with calcium fluoride and dicalcium pyrophosphate, Proc. Nauk. Akad. Ekon im. Oskara Langego Wroclawiu132:301–303, 1978

    CAS  Google Scholar 

  42. Rowles, S.L.: Discussion of first session. in M.V. Stack, R.W. Fearnhead (eds.): Tooth Enamel its Composition, Properties, and Fundamental Structure, p. 57. John Wright & Sons, Ltd., Bristol, 1965

    Google Scholar 

  43. Young R.A., Holcomb, D.W.: Hydroxyapatite variability shown by deuteration, J. Dent. Res.55: B255, 1976

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcomb, D.W., Young, R.A. Thermal decomposition of human tooth enamel. Calcif Tissue Int 31, 189–201 (1980). https://doi.org/10.1007/BF02407181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407181

Key words

Navigation