Skip to main content
Log in

Effect of stenotic geometry on flow behaviour across stenotic models

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In the study the influence of the geometry of stenoses on poststenotic flow characteristics such as faminar flow, separation, flow instabilities and local turbulences were assessed. Stenoses were represented by 12 rigid-walled models. The different geometric characteristics were length, percentage lumen area reduction, exit angle and eccentric location of the residual lumen. The flow characteristics were investigated by visualising the flow pattern with a birefringent solution and by measuring the flow and the pressure drop along the stenoses. All data were obtained under steady flow conditions for Reynolds numbers varying from approximately 1 to 500. In stenoses with short and concentric shapes local turbulence develops at Reynolds numbers well below the corresponding Reynolds numbers obtained in stenoses with the same percent lumen area reduction but with a long and eccentric shape. The results indicate that the photoelastic technique is a suitable method of obtaining a picture of the overall flow field downstream of a constriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, A′ :

amplitude of the ordinary and extraordinary beam at the photoelastic apparatus

d :

diameter of stenosis

D :

diameter of unobstructed tube=21 mm

l :

distance between pressure taps

L :

length of stenosis

ΔP :

pressure drop

Re :

Reynolds number=2DU ρ/μ

Re * :

critical Reynolds number

s :

difference between the ordinary and extraordinary beam leaving the test section at the photoelastic apparatus

U :

mean velocity in unobstructed tube

Z :

axial position from the exit of the stenosis

α:

alpha parameter = (D/2)·√2πvρ/μ

β:

exit angle of stenosis

γ, γ′:

orientation of the principal crystal axes

μ:

absolute viscosity of fluid

ν:

pulsation frequency

ρ:

density of fluid

References

  • Ahmed, S. A. (1981) An experimental investigation of steady and pulsative flow through a constricted tube. Ph.D. Thesis, Georgia Institute of Technology.

  • Ahmed, S. A. andGiddens, D. P. (1983a) Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers.J. Biomech.,16, 505–516.

    Article  Google Scholar 

  • Ahmed, S. A. andGiddens, D. P. (1983b) Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. ——Ibid.,16, 955–963.

    Article  Google Scholar 

  • Ahmed, S. A. andGiddens, D. P. (1984) Pulsative poststenotic flow studies with laser Doppler anemometry. ——Ibid.,17, 695–705.

    Article  Google Scholar 

  • Azuma, T., andFukushima, T. (1976) Flow patterns in stenotic blood vessel models.Biorheology,13, 337–355.

    Google Scholar 

  • Back, L. H. andRoschke, E. J. (1972) Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion.Trans. ASME, J. Appl. Mech.,39, 677–681.

    Google Scholar 

  • Caro, C. G., Fitz-Gerald, J. M. andSchroter, R. C. (1971) Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.Proc. R. Soc. Lond. B,177, 109–159.

    Article  Google Scholar 

  • Caro, C. G. (1973) Transport of material between blood and wall in arteries. InAtherogenesis—initiating factors. Ciba Foundation Symposium,12, Academic Scientific Publishers, Amsterdam, 127–164.

    Google Scholar 

  • Cassanova, R. A. andGiddens, D. P. (1978) Disorder distal to modeled stenoses in steady and pulsatileflow.J. Biomech.,11, 441–453.

    Article  Google Scholar 

  • Deshpande, M. D., Giddens, D. P., andMabon, R. F. (1976) Steady laminar flow through modelled vascular stenoses. ——Ibid.,9, 165–174.

    Article  Google Scholar 

  • Fry, D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients.Circ. Res.,22, 165–197.

    Google Scholar 

  • Fry, D. L. (1969) Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. ——Ibid.,26, 93–108.

    Google Scholar 

  • Fry, D. L. (1973) Response of the arterial wall to certain physical factors. InAtherogenesis—Initiating factors. Ciba Foundation Symposium,12, Academic Scientific Publishers, Amsterdam, 93–125.

    Google Scholar 

  • Fukushima, T., andAzuma, T. (1982) The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcation, and branchings.Biorheology,19, 143–154.

    Google Scholar 

  • Giddens, D. P., Mabon, R. F. andCassanova, R. A. (1976) Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs.Circ. Res.,39, 112–119.

    Google Scholar 

  • Kim, B. M., andCorcoran, W. H. (1974) Experimental measurements of turbulence spectra distal to stenoses.J. Biomech.,7, 335–342.

    Article  Google Scholar 

  • Kirkeeide, R. L. andYoung, D. F. (1977) Wall vibrations induced by flow through simulated stenoses in models and arteries. ——Ibid.,10, 431–441.

    Article  Google Scholar 

  • Liepsch, D. (1974) Untersuchungen der Strömungsverhältnisse in Verzweigungen von Rohren kleiner Durchmesser (Koronarien) bei Stromtrennung. Dissertation, Technische Universitats München.

  • Liepsch, D., andMoravec, S. (1984) Pulsatile flow of non-newtonian fluid in distensible models of human arteries.Biorheology,21, 571–586.

    Google Scholar 

  • Mates, R. E., Gupta, R. L., Bell, A. C., andKlocke, F. J. (1978) Fluid dynamics of coronary artery stenosis.Circ. Res.,42, 152–162.

    Google Scholar 

  • Moravec, S., andLiepsch, D. (1983) Flow investigations in a model of three-dimensional human artery with newtonian and non-newtonian fluids—I.Biorheology,20, 745–759.

    Google Scholar 

  • Roach, M. R. (1972) Poststenotic dilatation in arteries. InCardiovascular fluid dynamics, vol. 2.Bergel, D. H. (Ed.), Academic Press, New York, 111–139.

    Google Scholar 

  • Robbins, S. L., andBentov, I. (1967) The kinetics of viscous flow in a model vessel.Lab. Invest.,16, 864–874.

    Google Scholar 

  • Rodkiewicz, C. M. (1983) Fluid dynamics. InArteries and arterial blood flow.Rodkiewicz, C. M. (Ed.), Springer Verlag, Vienna, New York, 327–411.

    Google Scholar 

  • Sacks, A. H., Tickner, E. G. andMacdonald, I. B. (1971) Criteria for the onset of vascular murmurs.Circ. Res.,29, 249–256.

    Google Scholar 

  • Stein, P. D. andSabbah, H. N. (1980) Hemorheology of turbulence.Biorheology,17, 301–319.

    Google Scholar 

  • Yongchareon, W., andYoung, D. F. (1979) Initiation of turbulence in models of arterial stenoses.J. Biomech.,12, 185–196.

    Article  Google Scholar 

  • Young, D. F., andTsai, F. Y. (1973a) Flow characteristics in models of arterial stenoses—I. Steady flow. ——Ibid.,6, 395–410.

    Article  Google Scholar 

  • Young, D. F. andTsai, F. Y. (1973b) Flow characteristics in models of arterial stenoses—II. Unsteady flow. ——Ibid.,6, 547–559.

    Article  Google Scholar 

Bibliography

  • Foreman, J. E. K., andHutchinson, K. J. (1970) Arterial wall vibration distal to stenoses in isolated arteries of dog and man.Circ. Res.,26, 583–590.

    Google Scholar 

  • Forrester, J. H. andYoung, D. F. (1970a) Flow through a converging-diverging tube and its implications in occlusive vascular disease—I.J. Biomech.,3, 297–305.

    Article  Google Scholar 

  • Forrester, J. H. andYoung, D. F. (1970b) Flow through a converging-diverging tube and its implications in occlusive vascular disease—II. ——Ibid.,3, 307–316.

    Article  Google Scholar 

  • Kawaguti, M., andHamano, A. (1983) Numerical study on poststenotic dilatation.Biorheology,20, 507–518.

    Google Scholar 

  • Liepsch, D., Moravec, S. andZimmer, R. (1981) Influence of the hemodynamic effect on vessel alterations.Biomed. Tech.,26, 115–122.

    Article  Google Scholar 

  • Schlichting, H. (1965)Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe, 5. Auflage, 421–457, 552–587.

    MATH  Google Scholar 

  • Seeley, B. D., andYoung, D. F. (1976) Effect of geometry on pressure losses across models of arterial stenoses.J. Biomech.,9, 439–448.

    Article  Google Scholar 

  • Young, D. F., Cholvin, N. R., Kirkeeide, R. L., andRoth, A. C. (1977) Hemodynamics of arterial stenoses at elevated flow rates.Circ. Res.,41, 99–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solzbach, U., Wollschläger, H., Zeiher, A. et al. Effect of stenotic geometry on flow behaviour across stenotic models. Med. Biol. Eng. Comput. 25, 543–550 (1987). https://doi.org/10.1007/BF02441747

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441747

Keywords

Navigation