Skip to main content
Log in

Classification of osteoporosis in the elderly is dependent on site-specific analysis

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vertebral osteoporosis accounts for over 500,000 spinal fractures annually, the majority of which occur in older women. Despite these statistics, data regarding the rate of spinal bone loss in this population are conflicting. Moreover, the site of skeletal evaluation may significantly alter classification of osteoporosis in this age group. To examine trabecular-rich spinal bone loss with a measurement less affected by age-related artifacts that the AP spine, we measured lateral lumbar spine bone density (BMD) using dual-energy X-ray absorptiometry in 120 healthy, ambulatory, community-dwelling women 65 years of age and older (mean 70±5 years, range 65–88). We also examined cortical-rich sites in the forearm and total body along with AP spine and femoral BMD to assess the impact of site specificity using the World Health Organization (WHO) classification of osteoporosis. Significant losses in BMD were observed at the lateral spine (−1.1%/year,P<0.01), forearm (−0.77%/year,P≤0.01), total hip (−0.75%/year,P≤0.01), femoral neck (−0.70%/year,P≤0.05), and trochanter (−0.78%/year,P≤0.01), but not the AP spine. Using the WHO criteria, lateral spine BMD determinations classified 66% of women with osteoporosis in contrast to 29% using the AP projection. Osteoporosis was diagnosed in 55% of women using measurements of the femoral neck, 43% using the total radius, and 19% using the total body. We conclude that elderly women lose bone at trabecular-and cortical-rich sites (lateral spine and total radius, respectively) in addition to sustaining significant age-related bone loss at mixed cortical/trabecular sites such as the hip. Classification of osteoporosis in this age group more than doubles using lateral versus AP spinal projections, supporting the necessity of developing more uniform agreement on site-specific analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    Article  PubMed  CAS  Google Scholar 

  2. Resnick NM, Greenspan SL (1989) “Senile” osteoporosis reconsidered. JAMA 261:1025–1029

    Article  PubMed  CAS  Google Scholar 

  3. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7:625–632

    PubMed  CAS  Google Scholar 

  4. Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 7:546–563

    Google Scholar 

  5. Riggs BL, Wahner HW, Melton LJ III, Richelson LS, Judd HL, Offord KP (1986) Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest 77:1487–1491

    PubMed  CAS  Google Scholar 

  6. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res 9:1959–1965

    PubMed  CAS  Google Scholar 

  7. Rizzoli R, Slosman D, Bonjour J-Ph (1995) The role of dual energy x-ray absorptiometry of lumbar spine and proximal femur in the diagnosis and follow-up of osteoporosis. Am J Med 98(suppl 2A):33S-36S

    Article  PubMed  CAS  Google Scholar 

  8. Dawson-Hughes B, Dallal GE (1990) Effect of radiographic abnormalities on rate of bone loss from the spine. Calcif Tissue Int 46:280–281

    PubMed  CAS  Google Scholar 

  9. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207

    PubMed  CAS  Google Scholar 

  10. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A (1992) The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 50:507–510

    Article  PubMed  CAS  Google Scholar 

  11. Uebelhart D, Duboeuf F, Meunier PJ, Delmas PD (1990) Lateral dual-photon absorptiometry: a new technique to measure the bone mineral density at the lumbar spine. J Bone Miner Res 5:525–531

    PubMed  CAS  Google Scholar 

  12. Finkelstein JS, Cleary RL, Butler JP, Antonelli R, Mitlak BH, Deraska DJ, Zamora-Quezada JC, Neer RM (1994) A comparison of lateral versus anterior-posterior spine dual energy x-ray absorptiometry for the diagnosis of osteopenia. J Clin Endocrinol Metab 78:724–730

    Article  PubMed  CAS  Google Scholar 

  13. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192:845–850

    PubMed  CAS  Google Scholar 

  14. Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137

    PubMed  CAS  Google Scholar 

  15. Feyerabend AJ, Lear JL (1993) Regional variations in bone mineral density as assessed with dual-energy photon absorptiometry and dual x-ray absorptiometry Radiology 186:467–469

    PubMed  CAS  Google Scholar 

  16. Mazess RB, Barden HS, Ettinger M, (1988) Radial and spinal bone mineral density in a patient population. Arthritis Rheum 31:891–897

    PubMed  CAS  Google Scholar 

  17. Wuster C, Duckeck G, Uguel A, Lojen M, Minne HW, Ziegler R (1992) Bone mass of spine and forearm in osteoporosis and in German normals: influences of sex, age and anthropometric parameters. Eur J Clin Invest 22:366–370

    Article  PubMed  CAS  Google Scholar 

  18. Kanis JA (1995) Treatment of osteoporosis in elderly women. Am J Med 98 (suppl 2A):60S-66S

    PubMed  CAS  Google Scholar 

  19. Lai K, Rencken M, Drinkwater BL, Chesnut CH III (1993) Site of bone density measurement may affect therapy decision. Calcif Tissue Int 53:225–228

    Article  PubMed  CAS  Google Scholar 

  20. Greenspan SL, Greenspan FS, Resnick NM, Block JE, Friedlander AL, Genant HK (1991) Skeletal integrity in premenopausal and postmenopausal women receiving long-term L-thyroxine therapy. Am J Med 91:5–14

    Article  PubMed  CAS  Google Scholar 

  21. Greenspan SL, Oppenheim DS, Klibanski A (1989) Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann Intern Med 110:526–531

    PubMed  CAS  Google Scholar 

  22. Favus MJ (1993) Bone density reference data. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Raven Press: New York. pp 426–430

    Google Scholar 

  23. Mazess RB, Barden HS, Eberle RW, Denton MD (1995) Age changes of spine density in posterior-anterior and lateral projections in normal women. Calcif Tissue Int 56:201–205

    Article  PubMed  CAS  Google Scholar 

  24. Blunt BA, Klauber MR, Barrett-Connor EL, Edelstein SL (1994) Sex differences in bone mineral density in 1653 men and women in the sixth through tenth decades of life: the Rancho Bernardo Study. J Bone Miner Res 9:1333

    PubMed  CAS  Google Scholar 

  25. Adami S, Kanis JA (1995) Assessment of involutional bone loss: methodological and conceptual problems. J Bone Miner Res 10:511–517

    Article  PubMed  CAS  Google Scholar 

  26. Ryan PJ, Spector TP, Blake GM, Doyle DV, Fogelman I (1993) A comparison of reference bone mineral density measurements derived from two sources: referred and population based. Br J Radiol 66:1138–1141

    PubMed  CAS  Google Scholar 

  27. Looker AC, Johnston Jr CC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Lindsay RL (1995) Prevalence of low femoral bone density in older U.S. women from NHANES III. J Bone Miner Res 10:796–802

    PubMed  CAS  Google Scholar 

  28. Faulkner KG, Roberts LA, McClung MR (1995) Discrepancies in normative data between Hologic and Lunar systems (abstract). J Bone Miner Res 10(suppl 1):S146

    Google Scholar 

  29. Gluer CC, Steiger P, Selvidge R, Elliesen-Kliefoth K, Kayashi C, Genant HK (1990) Comparative assessment of dual-photon absorptiometry and dual-energy radiography. Radiology 174:223–228

    PubMed  CAS  Google Scholar 

  30. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844

    Article  PubMed  CAS  Google Scholar 

  31. Dans PE, Kerr MR (1979) Gerontology and geriatrics in medical education. N Engl J Med 300:228–232

    Article  PubMed  CAS  Google Scholar 

  32. Ross PD, David JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    PubMed  CAS  Google Scholar 

  33. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC (1994) Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128–133

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenspan, S.L., Maitland-Ramsey, L. & Myers, E. Classification of osteoporosis in the elderly is dependent on site-specific analysis. Calcif Tissue Int 58, 409–414 (1996). https://doi.org/10.1007/BF02509439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509439

Key words

Navigation