Skip to main content
Log in

Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In thoracic impedance cardiography (TIC) measurements the neck electrodes are often positioned at the basis of the neck, close to the neck-thorax transition. Theoretically, this neck-thorax transition will cause inhomogeneities in the current density and potential distribution. This was simulated using a 3D finite element method, solely representing the geometrical neck-thorax transition. The specific conductivity was 7 10−3 (Ωcm)−1 and the injected current was 1 mA. As expected, the model generated inhomogeneities in the current distribution at the neck-thorax transition, which reached as far as 5 cm into the neck and 20 cm into the thorax. These results are supported by in vivo measurements performed in 10 young male subjects, in which the position of the neck electrodes was varied. A two-way ANOVA revealed that the stroke volume of the lowest neck position was significantly different from the other positions. Small shifts in the position of the neck electrode resulted in large changes in impedance and stroke volume (127 to 82 ml for the Kubicek equation). To standardise the electrode position, the authors strongly recommend placement of the neck electrodes at least 6 cm above the clavicula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamicza, A., Tutsek, L., Daroczy, B., Bari, F., andNagy, S. (1994): ‘The measurment of cardiac output on dogs by impedance cardiography with different electrode arrangements,’Acta Physiol. Hungaria,81, pp. 37–52.

    Google Scholar 

  • Bernstein, D. P. (1986): ‘A new stroke volume equation for thoracic electrical bioimpedance: Theory and rationale’,Crit. Care Med.,14, pp. 904–909

    Article  Google Scholar 

  • Ebert, T. J., Eckberg, D. L., Vetrovec, G. M., andCowley, M. J. (1984): ‘Impedance cardiograms reliably estimate beat-by beat changes of left ventricular stroke volume in humans’,Cardiovascular Res.,18, pp. 354–360

    Article  Google Scholar 

  • Goovaerts, H. G., Raaijmakers, E., andHeethaar, R. M. (1995): ‘High frequency impedance cardiography.’ Proc. international conference onBioeletrical Impedance, Heidelberg, Germany

  • Heethaar, R. M., van Oppen, A. C., Ottenhoff, F. A., Brouwer, F. A. S., andBruinse, H. W. (1995): ‘Thoracic electrical bioimpedance: suitable for monitoring stroke volume during pregnancy?’Eur. J. Obst. Gynecol. Reproductive Biol.,58, pp. 183–190

    Article  Google Scholar 

  • Jensen, L., Yakimets, J., andTeo, K.-K. (1995): ‘A review of impedance cardiography’,Heart Lung,24, pp. 183–193

    Article  Google Scholar 

  • Jewkes, C., Sear, J. W., Verhoeff, F., Sanders, D. J., andFoēx, P. (1991): ‘Non-invasive measurements of cardiac output by thoracic electrical bioimpedance: a study of reproductibility and comparison with thermodilution.’Brit. J. Anaesthesia,67, pp. 788–794

    Google Scholar 

  • Kinnen, E., Kubicek, W., andPatterson, R. (1964): ‘Thoracic cage impedance measurements; impedance plethysmographic determination of cardiac output (a comparative study)’SAM-TDR-64-45, March

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., andMattson, R. H. (1966): ‘Development and evaluation of an impedance cardiac output system,’Aerosp. Med.,37, pp. 1208–1212

    Google Scholar 

  • Lamberts, R., Visser, K. P., andZijlstra, W. G. (1984): ‘Impedance cardiography’ (Van Gorkum Assen), pp. 38–45

  • Masaki, D. J., Greenspoon, J. S., andOuzounian, J. G. (1989): ‘Measurement of cardiac output in preganncy by thoracic electrical bioimpedance and thermodilution.’Am. J. Obstet. Gynecol.,161, pp. 680–684

    Google Scholar 

  • Meijer, J. H., Reulen, J. P. H., Schneider, H., Oe, P. L., Allon, W., andThijs, L. G. (1982): ‘Differential impedance plethysmography for measuring thoracic impedances,’Med. Biol. Eng. Comput.,20, pp. 187–194

    Article  Google Scholar 

  • Mohapatra, S. N. (1981): ‘Non-invasive cardiovascular monitoring technique (London: Pitman Medical Limited), pp. 99–102

    Google Scholar 

  • Patterson, R. P., Wang, L. Raza, B., andWood, K. (1990): ‘Mapping the cardiogenic impedance signal on the thoracic surface’,Med. Biol. Eng. Comput.,28, pp. 212–216

    Article  Google Scholar 

  • Patterson, R. P., Wang, L., andRaza, S. B. (1991): ‘Impedance cardiography using band and regional electrodes in supine, sitting and during exercise,’IEEE Trans. Biomed. Eng.,38, pp. 393–400

    Article  Google Scholar 

  • Patterson, R. P., Wang, L., McVeigh, G., Burns, R., andCohn, J. (1993): ‘Impedance cardiography: the failure of sternal electrodes to predict changes in stroke volume,’Biol. Psychology,36, pp. 33–41

    Article  Google Scholar 

  • Preiser, J. C., Daper, A., Parquier, J. N., Contempre, B., andVincent, J. L. (1989): ‘Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation,’Intensive Care Med,15, pp. 221–223

    Article  Google Scholar 

  • Qu, M., Zhang, Y., Webster, J. G., andTompkins, W. J. (1986): ‘Motion artifact from spot and band electrodes during impedance cardiography,’IEEE Trans. Biomed. Eng.,33, pp. 1029–1035

    Google Scholar 

  • Raaijmakers, E., Faes, Th. I. C., Goovaerts, H. G., DeVries, P. M. J. M., andHeethaar, R. M. (1997): ‘The inaccuracy of Kubicek’s one-cylinder model in thoracic impedance cardiography,’IEEE Trans. Biomed. Eng.,44, pp. 70–76

    Article  Google Scholar 

  • Sakamoto, K., Muto, K., Kanai, H., andIizuka, M. (1979): ‘Problems of impedance cardiography’,Med. Biol. Eng. Comput.,17, pp. 697–709

    Article  Google Scholar 

  • Sramek, B. B. (1981): ‘Noninvasive technique for measurement of cardiac output by means of electrical impedance.’ Proc. 5th international conference onElectrical Bioimpedance, Tokyo, Japan, pp. 39–42

  • Wang, L., andPatterson, R. P. (1995): ‘Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models,’IEEE Trans. Biomed. Eng.,42, pp. 141–149

    Article  Google Scholar 

  • Woltjer, H. H., Arntzen, B. W. G. J., Bogaard, H. J., andDeVries, P. M. J. M. (1996): ‘Optimalization of the spot electrodes array in impedance cardiography,”Med. Biol. Eng. Comput.,34, pp. 84–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Heethaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaijmakers, E., Faes, T.J.C., Goovaerts, H.G. et al. Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography. Med. Biol. Eng. Comput. 36, 592–597 (1998). https://doi.org/10.1007/BF02524429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524429

Keywords

Navigation