Skip to main content
Log in

Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A computer model is used to calculate the optimum geometry of an epidural electrode, consisting of a longitudinal contact array, for spinal cord stimulation in the managmment of chronic, intractable pain. 3D models of the spinal area are used for the computation of stimulation induced fields, and a cable model of myelinated nerve fibre is used for the calculation of the threshold stimulus to excite large dorsal column and dorsal root fibres. The criteria for the geometry of the longitudinal contact array are: a low threshold for the stimulation of dorsal column fibres compared with dorsal root fibres; and a low stimulation voltage (and current). For both percutaneous and laminectomy electrodes, the contact length should be approximately 1.5 mm, and the optimum contact separation, as determined by the computer model, is 2–2.5 mm. The contacts for a laminectomy electrode should be approximately 4 mm wide. This electrode geometry is applicable to all spinal levels where the dorsal columns can be stimulated (C1-2 down to L1). The stimulating electrode should preferably be used as a tripole with one (central) cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barolat, G., Zeme, S. andKetcik, B. (1991): ‘Multifactorial analysis of epidural spinal cord stimulation’,Stereotact. Funct. Neurosurg.,56, pp. 77–103

    Google Scholar 

  • Barolat, G., Massaro, F., He, J., Zeme, S. andKetcik, B. (1993): ‘Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man’,J. Neurosurg.,78, pp. 233–239

    Article  Google Scholar 

  • He, J., Barolat, G., Holsheimer, J. andStruijk, J. J. (1994): ‘Perception threshold and electrode position for spinal cord stimulation’,Pain,59, pp. 55–63

    Article  Google Scholar 

  • Holsheimer, J. andStruijk, J. J. (1991): ‘How do geometric factors influence epidural spinal cord stimulation? A quantitative analysis by computer modeling’,Stereotact. Funct. Neurosurg.,56, pp. 234–249

    Google Scholar 

  • Holsheimer, J., Den Boer, J. A., Struijk, J. J. andRozeboom, A. R. (1994): ‘MR assessment of the normal position of the spinal cord in the spinal canal’,Am. J. Neuroradiol.,15, pp. 951–959

    Google Scholar 

  • Holsheimer, J., Struijk, J. J. andTas, N. R. (1995): ‘Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation’,Med. Biol. Eng. Comput.,33, pp. 676–682

    Article  Google Scholar 

  • Holsheimer, J. (1997): ‘Effectiveness of spinal cord stimulation in the management of chronic pain: analysis of technical drawbacks and solutions’,Neurosurgery,40, pp. 990–999

    Article  Google Scholar 

  • Hunter, J.P. andAshby, P. (1994): ‘Segmental effects of epidural spinal cord stimulation in humans’,J. Physiol.,474, pp. 407–419

    Google Scholar 

  • Jobling, D. T., Tallis, R. C., Sedgwick, E. M. andIllis, L. S. (1980): ‘Electronic aspects of spinal-cord stimulation in multiple sclerosis’,Med. Biol. Eng. Comput.,18, pp. 48–56

    Article  Google Scholar 

  • Law, J. D. (1983): ‘Spinal stimulation: statistical superiority of monophasic stimulation of narrowly separated, longitudinal bipoles having rostral cathodes’,Appl. Neurophysiol.,46, pp. 129–137

    Google Scholar 

  • McNeal, D.R. (1976): ‘Analysis of a model for excitation of myelinated nerve’,IEEE Trans.,BME-23, pp. 329–337

    Google Scholar 

  • Melzack, R. andWall, P. D. (1965): ‘Pain mechanisms: a new theory’,Sci.,150, pp. 971–979

    Article  Google Scholar 

  • North, R. B., Ewend, M. G., Lawton, M. T. andPiantadosi, S. (1991): ‘Spinal cord stimulation for chronic, intractable pain: superiority of ‘multi-channel’ devices’,Pain,44, pp. 119–130

    Article  Google Scholar 

  • Rattay, F. (1986): ‘Analysis of models for external stimulation of axons’,IEEE Trans.,BME-33, pp. 974–977

    Google Scholar 

  • Rattay, F. (1987): ‘Ways to approximate current-distance relations for electrically stimulated fibres’,J. Theor. Biol.,125, pp. 339–349

    Article  Google Scholar 

  • Rijkhoff, N.J.M., Holsheimer, J., Koldewijn, E.L., Struijk, J.J., Van Kerrebroeck, P.E.V., Debruyne, F.M.J., andWijkstra, H. (1994): ‘Selective stimulation of sacral nerve roots for bladder control; a study by computer modeling’,IEEE Trans.,BME-41, pp. 413–424

    Google Scholar 

  • Robblee, L. S. andRose, T. L. (1990): ‘Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation’, inAgnew, W. F. andMcCreery, D. B., (Eds.): ‘Neural prostheses, fundamental studies’ (Prentice-Hall, Englewood Cliffs) chap. 2, pp. 26–66

    Google Scholar 

  • Struijk, J. J., Holsheimer, J., Van Der Heide, G. G., andBoom, H. B. K. (1992): ‘Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching’,IEEE Trans. BME-39, pp. 903–912

    Google Scholar 

  • Struijk, J. J., Holsheimer, J., Barolat, G., He, J., andBoom, H. B. K. (1993a): ‘Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data’,IEEE Trans.,RE-1, pp. 101–108

    Google Scholar 

  • Struijk, J. J., Holsheimer, J., andBoom, H. B. K. (1993b): ‘Excitation of dorsal root, fibers in spinal cord stimulation: a theoretical study’,IEEE Trans. BME-40, pp. 632–639

    Google Scholar 

  • Tulgar, M., Barolat, G., andKetcik, B. (1993): ‘Analysis of parameters for epidural spinal cord stimulation. I. Perception and tolerance thresholds resulting from 1,100 combinations’,Stereotact. Funct. Neurosurg.,61, pp. 129–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Holsheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holsheimer, J., Wesselink, W.A. Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole. Med. Biol. Eng. Comput. 35, 493–497 (1997). https://doi.org/10.1007/BF02525529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525529

Keywords

Navigation