Skip to main content
Log in

Neurobiologische Mechanismen der Übertragung von Muskelschmerz

Neurobiological mechanisms of muscle pain referral

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Im Gegensatz zu Hautschmerz wird Muskelschmerz oft in Körperregionen weit entfernt von der Läsion übertragen. Ein Beispiel sind Triggerpunkte in den Halsmuskeln, die übertragene Schmerzen im Kopf auslösen können. Die Konvergenz-Projektions-Theorie von Ruch ist noch immer das zentrale Konzept für die Erklärung der Schmerzübertragung. Die Grundlage der Theorie ist der konvergente Antrieb eines Hinterhornneurons von zwei unterschiedlichen Versorgungsgebieten; diese Situation führt dazu, daß Neurone im Thalamus den Ursprung der Aktivierung nicht mehr lokalisieren können. Im Grunde genommen ist die Übertragung von Schmerzen nichts anderes als eine Fehllokalisation der Schmerzquelle. Die Konvergenz-Projektions-Theorie kann einige Aspekte der Schmerzübertragung bei Patienten nicht erklären; daher wird in der vorliegenden Arbeit ein weiterer Mechanismus vorgestellt, der in akuten Umschaltvorgängen in Hinterhornneuronen unter dem Einfluß eines Muskelschmerzes besteht. Ergebnisse aus Tierexperimenten deuten darauf hin, daß Hinterhornneurone ineffektive synaptische Verbindungen mit der Körperperipherie besitzen, die bei Einwirkung von Schmerzreizen durchgeschaltet werden und zu einer Fehllokalisation von Schmerzreizen führen. Wahrscheinlich ist das Neuropeptid Substanz P an den Veränderungen der Hinterhornverschaltung bei Muskelschmerz und Übertragung beteiligt.

Abstract

In contrast to pain from the skin, muscle pain is often referred to regions remote from the lesion. For instance, trigger points in neck muscles can elicit pain in the head. The convergence-projection theory of Ruch is still the central concept for the explanation of pain referral. The basis of the theory is that a dorsal horn neuron has convergent input from two different body regions. Because of the convergence, thalamic neurons cannot localize the origin of the dorsal horn activation. Basically, the referral of pain is a mislocalization of pain. Some aspects of muscle pain referral in patients cannot be explained by the convergence-projection theory. Therefore, the present paper presents another mechanism, which consists in acute changes in dorsal horn synaptic connections following nociceptive input from muscle. Results from animal experiments indicate that dorsal horn neurons possess ineffective synaptic connections with the body periphery, which become effective under the influence of a painful stimulus and lead to a mislocalization of pain. The neuropeptide substance P is probably involved in the changes in functional organization that occur in the dorsal horn during muscle pain and its referral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Agnati LF, Fuxe K, Zoli M, Zini L, Toffano G, Ferraguti F (1986) A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128:201

    Article  PubMed  CAS  Google Scholar 

  2. Basbaum AI, Fields HL (1984) Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309

    Article  PubMed  CAS  Google Scholar 

  3. Berberich P, Hoheisel U, Mense S (1988) Effects of a carrageenan-induced myositis on the discharge properties of group III and IV muscle receptors in the cat. J Neurophysiol 59:1395

    PubMed  CAS  Google Scholar 

  4. Beylich G, Hoheisel U, Koch K, Mense S (1993) Neuroplastic changes induced in dorsal horn neurones by an experimental myositis and muscle nerve axotomy. Pflügers Arch 422 [Suppl 1]:R61

    Google Scholar 

  5. Bogduk N (1980) Lumbar dorsal ramus syndrome. Med J Austr 2:537

    CAS  Google Scholar 

  6. Cervero F (1983) Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol 337:51

    PubMed  CAS  Google Scholar 

  7. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259

    Article  PubMed  CAS  Google Scholar 

  8. Devor M, Wall PD, McMahon SB (1984) Dichotomizing somatic nerve fibers exist in rats but they are rare. Neurosci Lett 49:187

    Article  PubMed  CAS  Google Scholar 

  9. Doran FSA, Ratcliffe AH (1954) The physiological mechanism of referred shoulder-tip pain. Brain 77:427

    PubMed  CAS  Google Scholar 

  10. Foreman RD, Blair RW, Weber RN (1984) Viscerosomatic convergence onto T2–T4 spinoreticular, spinoreticular-spinothalamic, and spinothalamic tract neurons in the cat. Exp Neurol 85:597

    Article  PubMed  CAS  Google Scholar 

  11. Guilbaud G (1991) Central neurophysiological processing of joint pain on the basis of studies performed in normal animals and in models of experimental arthritis. Can J Physiol Pharmacol 69:637

    PubMed  CAS  Google Scholar 

  12. Herdegen T, Tölle TR, Bravo R, Zieglgänsberger W, Zimmermann M (1991) Sequential expression of JUN B, JUN D and FOS B proteins in rat spinal neurons: cascade of transcriptional operations during nociception. Neurosci Lett 129:221

    Article  PubMed  CAS  Google Scholar 

  13. Hockaday JM, Whitty CWM (1967) Patterns of referred pain in the normal subject. Brain 90:481

    PubMed  CAS  Google Scholar 

  14. Hoheisel U, Mense S (1990) Response behaviour of cat dorsal horn neurones receiving input from skeletal muscle and other deep somatic tissues. J Physiol 426:265

    PubMed  CAS  Google Scholar 

  15. Hoheisel U, Mense S (1993) Appearance of new receptive fields in rat dorsal horn neurones following noxious stimulation of skeletal muscle: a model for referral of muscle pain?. Neurosci Lett 153:9

    Article  PubMed  CAS  Google Scholar 

  16. Holzer P (1988) Local effector functions of capsaicin-sensitive sonsory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739

    Article  PubMed  CAS  Google Scholar 

  17. Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A (1992) Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brainstem neurones. Pain 48:53

    Article  PubMed  CAS  Google Scholar 

  18. Inman VT, Saunders JB, Saunders de CM (1944) Referred pain from skeletal structures. J Nerv Ment Dis 99:660

    Article  Google Scholar 

  19. Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sci 3:175

    Google Scholar 

  20. Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg’s Arch Pharmacol 310:175

    Article  CAS  Google Scholar 

  21. Lewis T (1942) Pain. The Macmillan Company, London

    Google Scholar 

  22. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519

    Article  PubMed  CAS  Google Scholar 

  23. MacKenzie J (1909) Symptoms and their interpretation. Shaw and Sons, London

    Google Scholar 

  24. Maggi CA, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Autonom Pharmacol 13:23

    CAS  Google Scholar 

  25. Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403

    PubMed  CAS  Google Scholar 

  26. Mense S, Light AR, Perl ER (1981) Spinal terminations of subcutaneous high-threshold mechanoreceptors. In: Brown AG, Réthelyi M (eds) Spinal cord sensation. Scottish Academic Press, Edinburgh, p 79

    Google Scholar 

  27. Meyers DER, Snow PJ (1984) Somatotopical inappropriate projections of single hair follicle afferent fibres to the cat spinal cord. J Physiol 347:59

    PubMed  CAS  Google Scholar 

  28. Molander C, YGGE I, Dalsgaard C-J (1987) Substance P-, somatostatin-, and calcitonin gene-related peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labelled cutaneous, muscular and visceral primary sensory neurons in the rat. Neurosci Lett 74:37

    Article  PubMed  CAS  Google Scholar 

  29. Pierau F-K, Fellmer G, Taylor DCM (1984) Somato-visceral convergence in cat dorsal root ganglion neurones demonstrated by double-labelling with fluorescent tracers. Brain Res 321:63

    Article  PubMed  CAS  Google Scholar 

  30. Ruch TC (1949) Visceral sensation and referred pain. In: Fulton JF (ed) Howell’s textbook of physiology, 16th edn. Saunders, Philadelphia, p 385

    Google Scholar 

  31. Sastry BR (1979) Substance P effects on spinal nociceptive neurones. Life Sci 24:2169

    Article  PubMed  CAS  Google Scholar 

  32. Schaible H-G, Schmidt RF, Willis WD (1987) Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord. Exp Brain Res 66:479

    Article  PubMed  CAS  Google Scholar 

  33. Sinclair DC, Weddell G, Feindel WH (1948) Referred pain and associated phenomena. Brain 71:184

    PubMed  CAS  Google Scholar 

  34. Torebjörk HE, Ochoa JL, Schady W (1984) Referred pain from intraneural stimulation of muscle fascicles in the median nerve. Pain 18:145

    Article  PubMed  Google Scholar 

  35. Travell J, Rinzler SH (1952) The myofascial genesis of pain. Postgrad Med 11:425

    PubMed  CAS  Google Scholar 

  36. Travell JG, Simons DG (1983) Myofascial pain and dysfunction. The trigger point manual. Williams and Wilkins, Baltimore London

    Google Scholar 

  37. Travell JG, Simons DG (1992) Myofascial pain and dysfunction. The trigger point manual, vol 2. The lower extremities. Williams and Wilkins, Baltimore London

    Google Scholar 

  38. Wall PD (1977) The presence of ineffective synapses and circumstances wich unmask them. Phil Trans R Soc Lond [Biol] 278:361

    CAS  Google Scholar 

  39. Woolf CJ, Wall PD (1986) Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci 6:1433

    PubMed  CAS  Google Scholar 

  40. Yu X-M, Mense S (1990) Response properties and descending control of rat dorsal horn neurones with deep receptive fields. Neurosci 39:823

    Article  CAS  Google Scholar 

  41. Yu X-M, Mense S (1990) Somatotopical arrangement of rat spinal dorsal horn cells processing input from deep tissues. Neurosci Lett 108:43

    Article  PubMed  CAS  Google Scholar 

  42. Zieglgänsberger W, Tulloch IF (1979) Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat. Brain Res 166:273

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. M. Zimmermann zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mense, S. Neurobiologische Mechanismen der Übertragung von Muskelschmerz. Schmerz 7, 241–249 (1993). https://doi.org/10.1007/BF02529860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529860

Schlüsselswörter

Key words

Navigation