Skip to main content
Log in

Androgen receptors in osteoblast-like cell lines

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Although androgens exert major effects on bone remodeling, the mechanisms by which they exert their effects remain unclear. Recently, it has become apparent that receptors for sex steroids may be present in osteoblastic cells. We have examined several cell lines with osteoblastic phenotypes to determine if specific, high affinity androgen receptors are present. Two cell lines of human origin (Saos-2 and U2-OS) and one of rat origin (UMR-106.01) were studied. Androgen binding sites were present in all cell lines. Binding affinities were high (KD=1.6−2.5×10−10 M), and similar to those in classical androgen target tissues (prostate, kidney). Concentrations were greater in the human cell lines (1277 and 1605 sites/cell) than in the rodent line (74 sites/cell). In the human cell lines androgen binding was also specific and typical of androgen receptors in other tissues. Specific estrogen binding was not present in the UMR-106.01 cells, and no estrogen receptors were detectable in the human cell lines using an enzyme-linked receptor immunoassay. Specific binding for progesterone was also absent in the UMR-106.01 cells, but progesterone receptors were detected immunologically in the Saos-2 (119 sites/cell) and U2-OS (118 sites/cell) lines. These findings indicate the presence of androgen receptors that are of similar character to those in classical androgen target tissues, and suggest that the study of these cell lines may be useful in the study of the regulation of androgen effects in osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabuchi C, Simmons DJ, Fausto A, Rusell JE, Binderman I, Avioli LV (1986) Bone deficit in ovariectomized rats. J Clin Invest 78:637

    PubMed  CAS  Google Scholar 

  2. Stock JL, Coderre JA, Mallette LE (1985) Effects of a short course of estrogen on mineral metabolism in postmenopausal women. J Clin Endocrinol Metab 61:595

    PubMed  CAS  Google Scholar 

  3. Gallagher JC, Riggs BL, DeLuca JF (1980) Effect of estrogen on calcium absorption and serum vitamin D metabolites in postmenopausal osteoporosis. J Clin Endocrinol Metab 51:1359

    PubMed  CAS  Google Scholar 

  4. Ettinger B, Genant HK, Cann CE (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 102:319

    PubMed  CAS  Google Scholar 

  5. Cheema C, Grant BF, Marcus R (1989) Effects of estrogen on circulating “free” and total 1,25-dihydroxyvitamin D and on the parathyroid-vitamin D axis in postmenopausal women. J Clin Invest 83:537

    PubMed  CAS  Google Scholar 

  6. Komm BS, Terpening CM, Benz DJ, Graeme KA, Gallegos A, Korc M, Greene GL, O'Malley BW, Haussler MR (1988) Estrogen binding, receptor mRNA and biologic response in osteoblast-like osteosarcoma cells. Science 241:81

    Article  PubMed  CAS  Google Scholar 

  7. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84

    Article  PubMed  CAS  Google Scholar 

  8. Gray TK, Flynn TC, Gray KM, Nabell LM (1987) 17β-Estradiol acts directly on the clonal osteoblastic cell line UMR106. Proc Natl Acad Sci 84:6267

    Article  PubMed  CAS  Google Scholar 

  9. Ernst M, Schmid CH, Froesch ER (1988) Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc Natl Acad Sci 85:2307

    Article  PubMed  CAS  Google Scholar 

  10. Fukayama S, Tashjian AH (1989) Direct modulation by estradiol of the response of human bone cells (Saos-2) to human parathyroid hormone (PTH) and PTH-related protein. Endocrinology 124:397

    PubMed  CAS  Google Scholar 

  11. Bankson DD, Rifai N, Williams ME, Silverman LM, Gray TK (1989) Biochemical effects of 17β-estradiol on UMR106 cells. Bone Miner 6:55

    Article  PubMed  CAS  Google Scholar 

  12. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci 86:854

    Article  PubMed  CAS  Google Scholar 

  13. Kasperk CH, Wergedal JE, Farley JR, Linkhart TA, Turner RT, Baylink DJ (1989) Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 124:1576

    PubMed  CAS  Google Scholar 

  14. Vaishnav R, Beresford JN, Gallagher JA, Russell RGG (1988) Effects of the anabolic steroid stanozolol on cells derived from human bone. Clin Sci 74:455

    PubMed  CAS  Google Scholar 

  15. Fukayama S, Tashjian AH (1989) Direct modulation by androgens of the response of human bone cells (SaOS-2) to human parathyroid hormone (PTH) and PTH-related protein. Endocrinology 125:1789

    PubMed  CAS  Google Scholar 

  16. Seeman E, Melton LJ III, O'Fallon WM, Riggs BL (1983) Risk factors for spinal osteoporosis in men. Am J Med 75:977

    Article  PubMed  CAS  Google Scholar 

  17. Greenspan SL, Oppenheim DS, Klinbanski A (1989) Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann Intern Med 110:526

    PubMed  CAS  Google Scholar 

  18. Finkelstein JS, Klinbanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF (1987) Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Méd 106:354

    PubMed  CAS  Google Scholar 

  19. Finkelstein JS, Klibanski A, Neer RM, Doppelt SH, Rosenthal DI, Segre GV, Crowley WF (1989) Increases in bone density during treatment of men with idiopathic hypogonadrotropic hypogonadism. J Clin Endocrinol Metab 69:776

    PubMed  CAS  Google Scholar 

  20. Johansen JS, Hassager C, Podenphant J, Riis BJ, Hartwell D, Thomsen K, Christiansen C (1989) Treatment of postmenopausal osteoporosis: Is the anabolic steroid nandrolone decanoate a candidate? Bone Miner 6:77

    Article  PubMed  CAS  Google Scholar 

  21. Nordin BEC, Robertson A, Seamark RF, Bridges A, Philcox JC, Need AG, Horowitz M, Morris HA, Deam S (1985) The relation between calcium absorption, serum dehydroepiandrosterone, and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab 60:651

    Article  PubMed  CAS  Google Scholar 

  22. Need AG, Horowitz M, Walker CJ, Chatterton BE, Chapman IC, Nordin BEC (1989) Cross-over study of fat-corrected forearm mineral content during nandrolone decanoate therapy for osteoporosis. Bone 10:3

    Article  PubMed  CAS  Google Scholar 

  23. Burton K (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315

    PubMed  CAS  Google Scholar 

  24. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660

    Article  CAS  Google Scholar 

  25. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327

    Article  PubMed  CAS  Google Scholar 

  26. Chang C, Kokontis J, Liao S (1988) Molecular closing of human and rat complementary DNA encoding androgen receptors. Science 240:324

    Article  PubMed  CAS  Google Scholar 

  27. Fang S, Liao S (1971) Androgen receptors. J Biol Chem 246:16

    PubMed  CAS  Google Scholar 

  28. Liao S, Liang T, Fang S, Castaneda E, Shao TS (1973) Steroid structure and androgenic activity. Specificities involved in the receptor binding and nuclear retention of various androgens. J Biol Chem 248:6154

    PubMed  CAS  Google Scholar 

  29. Berger FG, Watson G (1989) Androgen-regulated gene expression. Annu Rev Physiol 51:51

    Article  PubMed  CAS  Google Scholar 

  30. Ellison KE, Ingelfinger JR, Pivor M, Dzau VJ (1989) Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest 83:1941

    Article  PubMed  CAS  Google Scholar 

  31. Colston KW, King RJB, Hayward J, Fraser DI, Horton MA, Stevenson JC, Arnett TR (1989) Estrogen receptors and human bone cells: immunocytochemical studies. J Bone Miner Res 4:625

    Article  PubMed  CAS  Google Scholar 

  32. Lindsay R, Hart DM, Purdie D (1978) Comparative effects of estrogen and a progestogen on bone loss in postmenopausal women. Clin Sci Mol Med 54:193

    PubMed  CAS  Google Scholar 

  33. Snow GR, Anderson C (1985) The effects of continuous progestogen treatment on cortical bone remodeling activity in beagles. Calcif Tissue Int 37:282

    PubMed  CAS  Google Scholar 

  34. Mandel FP, Davidson BJ, Erlik Y, Judd HL, Meldrum DR (1982) Effects of progestins on bone metabolism in postmenopausal women. J Reprod Med 27:511

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orwoll, E.S., Stribrska, L., Ramsey, E.E. et al. Androgen receptors in osteoblast-like cell lines. Calcif Tissue Int 49, 183–187 (1991). https://doi.org/10.1007/BF02556115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556115

Key words

Navigation