Skip to main content
Log in

FT-IR microscopy of endochondral ossification at 20μ spatial resolution

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 1989

Summary

A Fourier transform infrared spectrometer has been coupled with an optical microscope to study the distribution and characteristics of the mineral phase in calcifying tissues at 20μ spatial resolution. This represents the first biophysical application of this technique. High quality spectra were obtained in a relatively short scan time (1–2 minutes) from thin longitudinal sections of normal and rachitic rat femurs. Substantial spatial variations in the extent and structure of the mineral phase were observed as a function of spatial position both within and beyond the growth plates, as judged by the phosphate vibrations in the 900–1200 cm−1 spectral region. The current experiments reveal the utility of FT-IR micrscopy in identification of sites where mineralization has occurred. In addition to vibrations from the inorganic components, the Amide I and Amide II motions of the protein constituents are readily observed and may be useful as a probe of protein/mineral interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boskey A, Marks SC (1985) Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rats. Calcif Tissue Int 37:287–292

    PubMed  CAS  Google Scholar 

  2. Eisenman DR, Glick P (1972) Ultrastructure and initial crystal formation in dentin. J Ultrastr Res 41:18–28

    Article  Google Scholar 

  3. Menczel J, Posner AS, Harper RA (1965) Age changes in the crystallinity of rat bone apatite. Isr J Med Sci 1:251–255

    PubMed  CAS  Google Scholar 

  4. Quinaux N, Richelle JL (1967) X-ray diffraction and infrared analyses of bone-specific gravity fractions in the growing rat. Israel J Med Sci 3:667–669

    Google Scholar 

  5. Robinson RA, Watson ML (1955) Crystal-collagen relationships in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–628

    Article  PubMed  CAS  Google Scholar 

  6. Landis WJ, Glimcher MJ (1982) Electron optical and analytical observations of rat growth plate cartilage prepared by ultramicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate. J Ultrastr Res 78:227–255

    Article  CAS  Google Scholar 

  7. Lee DD, Landis WJ, Glimcher MJ (1986) The solid, calcium-phosphate mineral phases in embryonic chick bone characterized by high voltage electron diffraction. J Bone Min Res 1:425–432

    CAS  Google Scholar 

  8. Baxter JD, Biltz RM, Pellegrino ED (1966) The physical state of bone carbonate: a comparative infra-red study in several mineralized tissues. Yale J Biol Med 38:456–470

    PubMed  CAS  Google Scholar 

  9. Termine JD, Posner AS (1966) Infrared determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 211:268–270

    Article  PubMed  CAS  Google Scholar 

  10. Termine JD, Lundy DR (1973) Hydroxide and carbonate in rat bone mineral and its synthetic analogues. Calcif Tissue Res 13:73–82

    Article  PubMed  CAS  Google Scholar 

  11. Cifuentes I, Gonzales-Diaz PF, Cifuentes-Delotte L (1980) Is there a “citrate-apatite” in biological calcified systems? Calcif Tissue Int 3:147–151

    Article  Google Scholar 

  12. Ozakazaki M (1983) F-CO3 2− interaction in IR spectra of fluoridated CO3-apatites. Calcif Tissue Int 35:78–81

    Article  Google Scholar 

  13. Mendelsohn R, Mantsch HH (1986) Fourier transform infrared studies of lipid-protein interaction. In: Watts A, De Pont J.J.H.H.M. (eds) Progress in protein-lipid interactions. Elsevier Science Publishers, Amsterdam, pp 104–146

    Google Scholar 

  14. Shearer C, Peters DC (1985) The art of FT-IR microsampling. In: Grasselli JG, Cameron DS (ed) SPIE, vol 553, proc 1985 Intl Conf on Fourier and Computerized Infrared Spectroscopy. pp 285–287

  15. Barbour RL, Smith MD, Compton DAC, Mehicic M (1985) Non-standard sampling techniques for infrared spectroscopy. In: Grasselli JG, Cameron DS (eds) SPIE, vol 553, proc 1985 Intl Conf on Fourier and Computerized Infrared Spectroscopy, pp 460–461

  16. Boskey AL, Wientroub S (1986) Phospholipid changes in the bones of second-generation vitamin D-deficient rats. Bone 7:277–281

    Article  PubMed  CAS  Google Scholar 

  17. Posner AS, Betts F, Blumenthal NC (1977) Role of ATP and Mg in the stabilization of biological and synthetic amorphous calcium phosphate. Calcif Tissue Res 22:208–211

    Article  PubMed  Google Scholar 

  18. Blumenthal NC, Posner AS, Holmes JN (1972) Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mater Res Bull 7:1181–1187

    Article  CAS  Google Scholar 

  19. Susi H, Ard JS, Carroll RJ (1971) The infrared spectrum and water binding of collagen as a function of relative humidity. Biopolymers, 10:1597–1604

    Article  PubMed  CAS  Google Scholar 

  20. Lazarev YA, Grishkovsky BA, Khromova TB (1984) Amide I band of IR spectrum and structure of collagen and related polypeptides. Biopolymers 24:1449–1478

    Article  Google Scholar 

  21. Bhatnagar VM (1968) Infrared spectra of hydroxyapatite and fluorapatite. Bull Soc Chim de France 1771–1773

  22. Wuthier RZ, Rice GS, Wallace JEB Jr, Weaver RL, Le-Geros RZ, Eanes ED (1985) In vitro precipitation of calcium phosphate under intracellular conditions: formation of brushite from an amorphous precursor in the absence of ATP. Calcif Tissue Int 37:401–410

    PubMed  CAS  Google Scholar 

  23. Hunziker EB, Herrmann KW, Schenk RK, Mueller M, Moor H (1984) Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure—implications for the theories of mineralization and vascular invasion. J Cell Biol 98:267–276

    Article  PubMed  CAS  Google Scholar 

  24. Hunziker EB, Schenk RK, Cruz-Orive L-M (1987) Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg 69A:162–173

    Google Scholar 

  25. Wientroub S, Hagan MP, Reddi AH (1982) Reduction of hematopoietic stem cells and adaptive increase in cell cycle rate in rickets. Am J Physiol 243:c303–306

    PubMed  CAS  Google Scholar 

  26. Grynpas MD, Bonar LC, Glimcher MJ (1984) X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J Materials Sci 19:723–736

    Article  CAS  Google Scholar 

  27. Doi Y, Moriwaki Y, Aoba T, Takahashi J, Joshin K (1982) ESR and IR studies of carbonate-containing hydroxyapatites. Calcif Tissue Int 34:178–181

    Article  PubMed  CAS  Google Scholar 

  28. Bullough PG, Jagannath A (1983) The morphology of the calcification front in articular cartilage: its significance in joint function. J Bone Jt Surg 65B:72–78

    Google Scholar 

  29. Althoff J, Quint P, Krefting ER, Hohling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analysis. Histochemistry 74:541–552

    Article  PubMed  CAS  Google Scholar 

  30. Hargest TE, Gay CV, Schraer H, Wasserman AJ (1985) Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determinated by quantitative electron probe analysis. J Histochem Cytochem 33:275–286

    PubMed  CAS  Google Scholar 

  31. Arsenault AL, Ottensmeyer GP (1983) Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. PNAS, US, 80:1322–1326

    Article  CAS  Google Scholar 

  32. Shapiro IM, Boyde A (1984) Microdissection-elemental analyses of the mineralizing growth cartilage of the normal and rachitic chick. Metab Bone Dis Rel Res 5:317–326

    Article  CAS  Google Scholar 

  33. Boyde A, Shapiro IM (1987) Morphological observations concerning patterns of mineralization of the normal and the rachitic chick growth cartilage. Anat Embryol 175:457–466

    Article  PubMed  CAS  Google Scholar 

  34. Kakuta S, Golub EE, Hasselgrove JHC, Chance B, Frasca P, Shapiro IM (1986) Redox studies of the epiphyseal growth cartilage: pyridine nucleotide metabolism and the development of mineralization. J Bone Min Res 1:433–440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02556664.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendelsohn, R., Hassankhani, A., DiCarlo, E. et al. FT-IR microscopy of endochondral ossification at 20μ spatial resolution. Calcif Tissue Int 44, 20–24 (1989). https://doi.org/10.1007/BF02556236

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556236

Key words

Navigation