Skip to main content
Log in

Kinetic factors influencing the dissolution behavior of calcium oxalate renal stones: A constant composition study

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A constant composition method has been used to examine the dissolution kinetics of calcium oxalate renal stones over a wide range of undersaturationin vitro. Demineralization experiments have been carried out with the concentrations of calcium and oxalate ions and ionic strength (hence the solution undersaturation) held constant by the potentiometrically controlled addition of medium electrolyte solution as diluent, triggered by a calcium ion electrode. Kinetic data for renal stones have been compared with results obtained for synthetic calcium oxalate. In addition, constant composition results have been directly compared with results obtained using conventional dissolution methods for both calculi and synthetic calcium oxalate. Overall, calcium oxalate renal stones exhibited markedly different kinetic dissolution behavior as compared with synthetic controls. The renal stone samples dissolved more slowly at all undersaturations, exhibited increased kinetic orders of reaction, and showed reduced sensitivity to solution hydrodynamics. Stones composed of mixed hydrates of calcium oxalate (mono- and di-) came to dihydrate equilibrium in conventional experiments and underwent net dissolution in solutions supersaturated to monohydrate under constant composition conditions. No conversion of di- to monohydrate was observed under these experimental conditions. These results indicate that stone dissolution is strongly influenced by adsorbed inhibitors, presumaly including matrix components, which may complicate efforts to develop systemic and/or irrigation measures effective forin situ solubilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller RA, Payne SR, Wickham JEA (1984) Electrohydraulic nephrolithotripsy: a preferable alternative to ultrasound. Br J Urol 56:589–593

    Article  PubMed  CAS  Google Scholar 

  2. Oosterlink W, De Sy WA (1983) A new percutaneous nephrostomy set. J Urol 129:466–467

    Google Scholar 

  3. Kallistratos G (1975) Litholytic agents with bacteriostatic properties in the conservative treatment of urolithiasis. Eur Urol 1:261–269

    PubMed  CAS  Google Scholar 

  4. Dretler SP, Pfister RC (1983) Percutaneous dissolution of renal calculi. Ann Rev Med 34:359–366

    Article  PubMed  CAS  Google Scholar 

  5. Carson CC, Moore AV, Weinerth JL, Ford KK, Reed Dunnick N (1984) Percutaneous dissolution of renal calculi using ultrasonic lithopalaxy. South Med J 77:196–199

    PubMed  CAS  Google Scholar 

  6. Kursh ED, Resnick MI (1984) Dissolution of uric acid calculi with systemic alkalinization. J Urol 132:286–287

    PubMed  CAS  Google Scholar 

  7. Nieh PT, Wurzel RS (1985) Dissolution of uric acid calculi with intravenous 1/6 molar lactate. Urol 26:129–134

    Article  PubMed  CAS  Google Scholar 

  8. Tung KH, Tan EC, Foo KT (1984) Chemolysis of uric acid stones. Ann Acad Med Singapore 13:620–624

    PubMed  CAS  Google Scholar 

  9. Spataro RF, Linke CA, Bartaria ZL (1978) The use of percutaneous nephrostomy and urinary alkalization in the dissolution of obstructing uric acid stones. Diag Radiol 129:629–632

    CAS  Google Scholar 

  10. Ansari ER, Kazim E, Husain I (1982) Management of the choked ureter in obstructive renal failure due to uric acid lithiasis. J Urol 128:257–261

    PubMed  CAS  Google Scholar 

  11. Sadi MV, Saltzman N, Feria G, Gittes RF (1985) Experimental observations on dissolution of uric acid calculi. J Urol 134:575–579

    PubMed  CAS  Google Scholar 

  12. Gotz F, Frang D, Hubber J, Nagy Z (1982) Combined oral and local therapy for the dissolution of urinary calculi. Int Urol Nephrol 14:239–246

    Article  PubMed  CAS  Google Scholar 

  13. Dretler SP, Pfister RC (1984) Primary dissolution therapy of struvite calculi. J Urol 131:861–863

    PubMed  CAS  Google Scholar 

  14. Sheldon CA, Smith AD (1982) Chemolysis of calculi. Urol Clin N Am 9:121–130

    CAS  Google Scholar 

  15. Verplaetse H, Verbeeck RMH, Minnaert H, Oosterlinck W (1985) Solubility of inorganic kidney stone components in the presence of acid-base sensitive complexing agents. Eur Urol 11:44–51

    PubMed  CAS  Google Scholar 

  16. Verplaetse H, Verbeeck RMH, Minnaert H, Osterlinck W (1986) Screening of chelating agents of chemolysis. Eur Urol 12:190–194

    PubMed  CAS  Google Scholar 

  17. Elliot JS (1973) Structure and composition of urinary calculi. J Urol 109:82–83

    PubMed  CAS  Google Scholar 

  18. Pawelchak JM (1982) Dissolution mechanisms of renal calculi. PhD thesis, University of Connecticut

  19. Pawelchak JM, Flanagan DR, Simonelli AP (1981) Rates and mechanisms of dissolution of renal calculi. I. Rates and mechanisms of dissolution of pure calcium oxalate monohydrate in acid and EDTA solution. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis: clinical and basic research. Plenum Press, New York, pp 539–544

    Google Scholar 

  20. Pawelchak JM, Flanagan DR, Simonelli AP (1981) Rates and mechanisms of dissolution of renal calculi. II. Development and discussion of potential models for dissolution of oxalate calculi. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis: clinical and basic research. Plenum Press, New York, pp 545–549

    Google Scholar 

  21. Pawelchak JM, Flanagan DR, Simonelli AP (1981) Rates and mechanisms of dissolution of renal calculi. III. Mechanisms and rates of dissolution of simulated oxalate calculi in acid and EDTA solutions. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis: clinical and basic reserch. Plenum Press, New York, pp 551–556

    Google Scholar 

  22. Wong WH (1982) Dissolution of calcium oxalate monohydrate and artificial renal calculi in reactive media. PhD Thesis, University of Iowa

  23. Ziolkowski F, Perrin DD (1977) Dissolution of urinary stones by calcium chelating agents—a study using a model system. Invest Urol 15:208–211

    Article  PubMed  CAS  Google Scholar 

  24. Burns JR, Belcher JA, Finlayson B (1985) Dissolution kinetics of calcium oxalate calculi. In: Schwille PD, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum Press, New York, pp 757–760

    Google Scholar 

  25. Butkevitch OV, Charkov AK, Panin AG (1982) Dissolution kinetics of calculi in complexone solutions. Vestnik Lening Univ 16:114–117

    Google Scholar 

  26. Butkevitch OV, Charkov AK,Panin AG (1982) Study of the effectiveness of the dissolution processes on calcium oxalate renal stones in various solutions. Vestnik Lening Univ 4:70–75

    Google Scholar 

  27. Butkevitch OV, Charkov AK, Panin AG, Zvinchuk RA (1981) Comparative study of the dissolution processes of phosphate, oxalate and urate renal stones in citrate solutions. Vestnik Lening Univ 10:106–111

    Google Scholar 

  28. Griffith DP, Bragin S, Musker DM (1976) Dissolution of struvite urinary stones—experimental studies in vitro. Invest Urol 13:351–353

    PubMed  CAS  Google Scholar 

  29. Burns JR, Gauthier JF, Finlayson B (1984) Dissolution kinetics of uric acid calculi. J Urol 131:708–711

    PubMed  CAS  Google Scholar 

  30. Tomazic B, Nancollas GH (1980) The kinetics of dissolution of calcium oxalate hydrates. II. The dihydrate. Invest Urol 18:97–101

    PubMed  CAS  Google Scholar 

  31. Tomazic B, Nancollas GH (1980) Crystal growth of calcium oxalate hydrates: a comparative kinetics study. J Coll Int Sci 75:149–159

    Article  CAS  Google Scholar 

  32. Tomazic B, Nancollas GH (1979) A study of the phase transformation of calcium oxalate trihydrate-monohydrate. Invest Urol 16:329–335

    PubMed  CAS  Google Scholar 

  33. Tomazic B, Nancollas GH (1982) The dissolution of calcium oxalate kidney stones. A kinetic study. J Urol 128:205–208

    PubMed  CAS  Google Scholar 

  34. White DJ, Nancollas GH (1982) The kinetics of dissolution of calcium oxalate monohydrate. A constant composition study. J Crystal Growth 57:267–272

    Article  CAS  Google Scholar 

  35. Nancollas GH, Gardner GL (1974) Kinetics of crystal growth of calcium oxalate monohydrate. J Crystal Growth 21:267–276

    Article  CAS  Google Scholar 

  36. Tomson MB, Barone JP, Nancollas GH (1977) Precise calcium phosphate determination. Atomic Absorpt Newslett 16:117–18

    CAS  Google Scholar 

  37. Gardner GL, Nancollas GH (1975) Kinetics of dissolution of calcium oxalate monohydrate. J. Phys Chem 79:2597–2600

    Article  CAS  Google Scholar 

  38. Nancollas GH (1979) The growth of crystals in solution. Adv Coll Int Sci 10:215–252

    Article  CAS  Google Scholar 

  39. Nancollas GH (1966) Interactions in electrolyte solutions. Elsevier, Amsterdam, pp 60–80

    Google Scholar 

  40. Davies CW (1962) Ion association. Butterworths, London

    Google Scholar 

  41. White DJ (1982) A constant composition study of the kinetics of crystallization and demineralization of calcium oxalate: applications to renal stone disease. PhD thesis, SUNY at Buffalo

  42. Tomazic B, Nancollas GH (1979) The kinetics of dissolution of calcium oxalate hydrates. J Crystal Growth 46:355–361

    Article  CAS  Google Scholar 

  43. Gaur SS, Nancollas GH (1984) Kinetics of crystal growth in urine. Kid Int 26:767–768

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.J., Coyle-Rees, M. & Nancollas, G.H. Kinetic factors influencing the dissolution behavior of calcium oxalate renal stones: A constant composition study. Calcif Tissue Int 43, 319–327 (1988). https://doi.org/10.1007/BF02556642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556642

Key words

Navigation