Skip to main content
Log in

Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Enamel of intact human teeth laser irradiatedin vitro under certain conditions is known to have less subsurface demineralization than unirradiated enamel on exposure to acid; consequently, the potential use of laser irradiance to reduce caries is apparent. The laser-induced physical and/or chemical changes that cause this reduced subsurface demineralization are not known. A laser-irradiated tooth enamel surface will have a temperature gradient that decreases towards the dentin junction. Dependent on irradiant conditions, the temperature may range from >1400°C at the surface to near normal at the dentin-pulp junction. Along this steep temperature gradient, different compositional, structural, and phase changes in the tooth enamel are to be expected. Identification of changes occurring along this gradient has bearing on understanding the dissolution reduction mechanism and, in turn, optimizing its effect. Changes in laser-irradiated material from the highest temperature region have been characterized, but those occurring in sequential layers of decreasing temperatures have not. Since the laser-induced changes are expected to primarily arise from localized heating, previously reported theramlly induced changes in tooth enamel on heating in conventional furnaces were utilized to infer corollary changes along the gradient in laser-irradiated tooth enamel. These thermally inferred changes which resulted in modifications in the tooth enamel apatite and/or newly formed phases were correlated with their probable effects on altering solubility. A temperature gradient range from 100–1600°C was considered with subdivisions as follows: I, 100–650°C; II, 650–1100°C; and III,>1100°C. Two of the products formed in range III, α-Ca3(PO4)2 and Ca4(PO4)2O, and also identified in the fused-melted material from laser-irradiated tooth enamel, are expected to markedly increase solubility in those regions that contain considerable amounts of these compounds. Products and changes occurring in range II, separate phases of α- and/or β-Ca3(PO4)2, and a modified phase of apatite, may increase or decrease the solubility depending on the Ca/P ratio and the resultant amounts of α-, β-Ca3(PO4)2 formed. Modifications in tooth enamel apatite effected in range I are expected to decrease its solubility; the formation of pyrophosphate in this range may have a substantial effect on reducing the solubility rate. It appears that laser-irradiant conditions that produce localized temperatures above about 650°C may have a deleterious effect on tooth enamel solubility unless calcium is introduced to increase the Ca/P ratio to near that of hydroxyapatite. Other important considerations of laser-irradiant treatment and interactions of tooth enamel, including enhanced uptake of fluoride, more effective irradiant wavelengths, selective reactions, directional absorption in crystals, and threshold irradiant conditions are briefly discussed and/or reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern RH, Sognnaes RF, Goodman F (1966) Laser effect on in vitro enamel permeability and solubility. J Am Dent Assoc 73:838–843

    PubMed  CAS  Google Scholar 

  2. Stern RH, Vahl J, Sognnaes RF (1972) Lased enamel: ultrastructural observations of pulsed carbon dioxide laser effects. J Dent Res 51:455–460

    PubMed  CAS  Google Scholar 

  3. Stern RH, Sognnaes RF (1972) Laser inhibition of dental caries suggested by first tests in vivo. J Am Dent Assoc 85:1087–1090

    PubMed  CAS  Google Scholar 

  4. Yamamoto H, Ooya K (1974) Potential of yttrium-aluminum-garnet laser in caries prevention. J Oral Pathol 3:7–15

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto H, Sato K (1980) Prevention of dental caries by Nd: YAG laser irradiation. J Dent Res 59:2171–2177

    Google Scholar 

  6. Lenz P, Gilde H, Waltz R (1982) Untersuchungen zur Schmelzversiegelung mit dem CO2-Laser. Dtsch Zahnärzlt Z 37:469–478

    CAS  Google Scholar 

  7. Borggreven JMPM, van Dijk JWE, Driessens FCM (1980) Effect of laser irradiation on the permeability of bovine dental enamel. Arch Oral Biol 25:831–832

    Article  PubMed  CAS  Google Scholar 

  8. Kantola S, Laine E, Tarna T (1973) Laser-induced effects on tooth structure. VI. X-ray diffraction study of dental enamel exposed to a CO2 laser. Acta Odont Scand 31:369–379

    PubMed  CAS  Google Scholar 

  9. Brune D (1980) Interaction of pulsed carbon dioxide laser beams with teeth in vitro. Scand J Dent Res 88:301–305

    PubMed  CAS  Google Scholar 

  10. Nagasawa A (1983) Research and development of lasers in dental and oral surgery. In: Atsumi K (ed) New frontiers in laser medicine and surgery. Excerpta Medica. Amsterdam, pp 233–241

    Google Scholar 

  11. Kuroda S, Fowler BO (1984) Compositional, structural, and phase changes in in vitro laser-irradiated human tooth enamel. Calcif Tissue Int 36:361–369

    Article  PubMed  CAS  Google Scholar 

  12. Stern RH (1974) Dentistry and the laser. In: Wolbarsht, ML (ed) Laser applications in medicine and biology. Vol. 2. Plenum Press, New York, pp 361–388

    Google Scholar 

  13. Boehm R, Rich J, Webster J, Janke S (1977) Thermal stress effects and surface cracking associated with laser use on human teeth. J Biomech Eng 99:189–194

    Google Scholar 

  14. Lobene RR, Bhussry BR, Fine S (1968) Interaction of carbon dioxide laser radiation with enamel and dentin. J Dent Res 47:311–317

    PubMed  CAS  Google Scholar 

  15. Kuroda S, Nakahara H (1981) Morphological changes in laser-irradiated extracted teeth. J Dent Res 60 (Special Issue A): Abstract 719

  16. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Article  PubMed  CAS  Google Scholar 

  17. Dowker SEP (1980) Infrared spectroscopic studies of thermally treated carbonate-containing apatites. PhD Thesis, University of London

  18. Legeros RZ, Bonel G, Legros R (1978) Types of “H2O” in human enamel and in precipitated apatites. Calcif Tissue Res 26:111–118

    Article  PubMed  CAS  Google Scholar 

  19. Arends J, Davidson CL (1975) HPOHPO 2-4 content in enemel and artificial carious lesions. Calcif Tissue Res 18:65–79

    Article  PubMed  CAS  Google Scholar 

  20. Corcia JT, Moody WE (1974) Thermal analysis of human dental enamel. J Dent Res 53:571–580

    CAS  Google Scholar 

  21. Eanes ED (1970) Thermochemical studies on amorphous calcium phosphate. Calcif Tissue Res 5:133–145

    Article  PubMed  CAS  Google Scholar 

  22. Fowler BO, Moreno EC, Brown WE (1966) Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol 11:477–492

    Article  PubMed  CAS  Google Scholar 

  23. Elliott JC (1964) The crystallographic structure of dental enamel and related apatites. PhD Thesis, University of London

  24. Dallemagne MJ (1964) Phosphate and carbonate in bone and teeth. In: Blackwood HJJ (ed) Proceedings of the First European Bone and Tooth Symposium. Pergamon Press, Oxford, pp 171–174

    Google Scholar 

  25. Newesely H (1977) High temperature behavior of hydroxy-and fluorapatite. J Oral Rehabil 4:97–104

    PubMed  CAS  Google Scholar 

  26. Riboud PV (1975) Composition et stabilité des phases a structure d'apatite dans le système CaO-P2O5-oxyde de fer-H2O a haute température. In: Physico-chimie et cristallographie des apatites d'intérêt biologique. Coll. Intern. C.N.R.S., No. 230, C.N.R.S., Paris, pp 473–480.

    Google Scholar 

  27. Welch JH, Gutt W (1961) High-temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc, pp 4442–4444

  28. Van Wazer JR (1958) Phosphorus and its compounds. Vol. 1. Interscience Publishers, New York

    Google Scholar 

  29. Nurse, RW, Welch JH, Gutt W (1959) High-temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. J Chem Soc 1077–1083

  30. Trombe JC, Montel G (1978) Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice. 1. On the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem 40:15–21

    Article  CAS  Google Scholar 

  31. Patel PR, Brown WE (1975) Thermodynamic solubility product of human tooth enamel: powdered sample. J Dent Res 54:728–736

    PubMed  CAS  Google Scholar 

  32. Brown WE, Patel PR, Chow LC (1975) Formation of CaHPO4·2H2O from enamel mineral and its relationship to caries mechanism. J Dent Res 54:475–481

    PubMed  CAS  Google Scholar 

  33. Brown WE (1973) Solubilities of phosphates and other sparingly soluble compounds. In: Griffith EJ, Beeton A, Spencer JM, Mitchell DT (eds) Environmental phosphorus handbook, John Wiley and Sons, New York, pp 203–239

    Google Scholar 

  34. Chow LC, Brown WE (1975) Singular points in the chemistry of teeth. J Dent Res 54 (Special Issue A): Abstract 120

  35. Lindsay WL (1979) Chemical equilibria in soils. John Wiley and Sons, New York, p 165

    Google Scholar 

  36. Körber F, Trömel, G (1933) Forschungen über den Aufbau der Phosphataschlacken und ihre Bedeutung für die Thomasmehlerzeugung. Arch Eisenhüttenw 7:7–20

    Google Scholar 

  37. Marshall HL, Reynolds DS, Jacob KD, Rader Jr, LF (1935) Phosphate fertilizers by calcination process. Ind Eng Chem 27:205–209

    Article  CAS  Google Scholar 

  38. Reynolds DS, Marshall HL, Jacob KD, Rader Jr LF (1936) Phosphate fertilizers by calcination process. Ind Eng Chem 28:678–682

    Article  CAS  Google Scholar 

  39. Hill WL, Reynolds DS, Hendricks SB, Jacob KD (1945) Nutritive evaluation of defluorinated phosphates and other phosphorus supplements. I. Preparation and properties of the samples. J Assoc Official Agr Chem 28:105–118

    CAS  Google Scholar 

  40. MacIntire WH, Palmer G, Marhall HL (1945) A “reference” precipitated tricalcium phosphate hydrate, preparation and identification. Ind Eng Chem 37:164–169

    Article  CAS  Google Scholar 

  41. Ando J (1958) Tricalcium phosphate and its variation. Bull Chem Soc Japan 31:196–201

    Article  CAS  Google Scholar 

  42. Bobrownicki W, Szustakowski M (1967) Badania nad termofosfatami szklistymi. II. Badania w podczewieni. Chemia Stos 11:345–351

    CAS  Google Scholar 

  43. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop Related Res 44:205–220

    CAS  Google Scholar 

  44. Brown WE, Chow LC (1976) Chemical properties of bone mineral. Ann Rev Mater Sci 6:213–236

    Article  CAS  Google Scholar 

  45. Meyer JL, Fowler BO (1982) Lattice defects in nonstoichiometric calcium hydroxylapatites. A chemical approach. Inorg Chem 21:3029–3035

    Article  CAS  Google Scholar 

  46. Brown WE, Chow LC (1981) Thermodynamics of apatite crystal growth and dissolution. J Crystal Growth 53:31–41

    Article  CAS  Google Scholar 

  47. Moreno EC, Gregory TM, Brown WE (1968) Preparation and solubility of hydroxypatite. J Res Natl Bur Stand 74A:733–782

    Google Scholar 

  48. Herman H, Dallemagne MJ (1961) The main mineral constituent of bone and teeth. Arch Oral Biol 5:137–144

    Article  PubMed  CAS  Google Scholar 

  49. Herman H (1964) La composition des dents du lapin: étude chimique et spectrométrique dans l'infra-rouge. Bull Soc Chim Biol 46:385–394

    PubMed  CAS  Google Scholar 

  50. Herman H, Francois P, Fabry C (1961) Le composé minéral fondamental des tissues calcifiés. I.-Présence de groupements acides dans le réseau apatitique des phosphates de calcium synthétiques. Bull Soc Chim Biol 43:629–642

    PubMed  CAS  Google Scholar 

  51. Young RA, Holcomb DW (1984) Role of acid phosphate in hydroxyapatite lattice expansion. Calcif Tissue Int 36:60–63

    Article  PubMed  CAS  Google Scholar 

  52. Davidson CL, Arends J (1977) Thermal analysis studies on sound and artificially decalcified tooth enamel. Caries Res 11:313–320

    Article  PubMed  CAS  Google Scholar 

  53. Fleisch H, Maerki J, Russell RGG (1966) Effect of pyrophosphate on dissolution by hydroxyapatite and its possible importance in calcium homeostasis. Proc Soc Exp Biol Med (NY) 122:317–320

    CAS  Google Scholar 

  54. Evans JR, Robertson WG, Morgan DB, Fleisch H (1980) Effects of pyrophosphate and diphosphonates on the dissolution of hydroxyapatites using a flow system. Calcif Tissue Int 31:153–159

    Article  PubMed  CAS  Google Scholar 

  55. Christoffersen J, Christoffersen MR (1981) Kinetics of dissolution of calcium hydroxyapatite. IV. The effect of some biologically important inhibitors. J Crystal Growth 53:42–54

    Article  CAS  Google Scholar 

  56. Gee A, Deitz VR (1955) Pyrophosphate formation upon ignition of precipitated basic calcium phosphates. J Am Chem Soc 77:2961–2965

    Article  CAS  Google Scholar 

  57. Kerebel B, Daculsi G, Kerebel LM (1979) Ultrastructural studies of enamel crystallites. J Dent Res 58 (Special Issue B):844–850

    PubMed  CAS  Google Scholar 

  58. Arends J, Jongebloed WL (1977) The enamel substrate-characteristics of the enamel surface. Swed Dent J 1:215–224

    PubMed  CAS  Google Scholar 

  59. Scott DB, Simmelink JW, Nygaard V (1972) Mineralization of dental enamel. In: Chemistry and physiology of enamel. Proceedings of Symposium held at the University of Michigan School of Dentistry, Sept. 17–18, 1971, pp 6–24

  60. Fleisch H, Russel RGG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    Article  CAS  Google Scholar 

  61. Sato K (1983) Relation between acid dissolution and histological alteration of heated tooth enamel. Caries Res 17:490–495

    PubMed  CAS  Google Scholar 

  62. Goodman BD, Kaufman HW (1977) Effects of an argon laser on the crystalline properties and rate of dissolution in acid of tooth enamel in the presence of sodium fluoride. J Dent Res 56:1201–1207

    PubMed  CAS  Google Scholar 

  63. Boehm R, Baechler T, Webster J, Janke S (1977) Laser processes in preventive dentistry. Opt Eng 16:493–496

    CAS  Google Scholar 

  64. Moreno EC, Kresak M, Zahradnik RT (1974) Fluoridated hydroxyapatite solubility and caries formation. Nature 247:64–65

    Article  PubMed  CAS  Google Scholar 

  65. Fowler BO (1967) Infrared spectra of hydroxy-fluor-apatite. Program and Abstracts, 45th General Meeting of the International Association for Dental Research, Abstract 247

  66. Fowler BO (1974) Infrated studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatite utilizing isotopic substitution. Inorg Chem 13:194–207

    Article  CAS  Google Scholar 

  67. Freund F, Knobel RM (1977) Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy. J Chem Soc Dalton pp 1136–1140

  68. Tomita F, Suzuki Y, Kaneko K, Mita S, Onozuka M, Sugaya E (1981) Chemical state change in human tooth enamel by low energy laser exposure. In: Atsumi K, Nimsakul N (eds) Laser Tokyo '81. Proceedings of the 4th Congress of the International Society for Laser Surgery. Japan Society for Laser Medicine, Tokyo, pp 17–20 of Session 12

    Google Scholar 

  69. Lenz P, Gilde H (1980) Schmelzversiegelung und Kavitäten-präparation mit Laserstrahlen. Eine neue Technologie zur Kariesprophylaxe und-therapie? Zahnärztl Welt 89:60

    Google Scholar 

  70. Melcer J, Melcer F, Hasson R, Merard R, Lancret P, Gautier J, Dejardin J (1983) The use of the CO2 laser beam in dentistry. In: Atsumi K (ed) New frontiers in laser medicine and surgery Excerpta medica, Amsterdam, pp 225–232

    Google Scholar 

  71. Kravitz LC, Kingsley JD, Elkin EL (1968) Raman and infrared studies of coupled PO4 −3 vibrations J Chem Phys 49:4600–4610

    Article  CAS  Google Scholar 

  72. Adams DM, Gardner IR (1974) Single-crystal vibrational spectra of apatite, vanadinite, and mimetite. J Chem Soc Dalton 14:1505–1509

    Article  Google Scholar 

  73. Meckel AH, Griebstein WJ, Neal RJ (1965) Ultrastructure of fully calcified human dental enamel. In: Stack MV, Fearnhead RW (eds) Tooth enamel. John Wright and Sons, Bristol, pp 160–162

    Google Scholar 

  74. Sicher H, Bhaskar SN (eds) (1972) Orban's oral histology and embryology, 7th ed. C.V. Mosby, Saint Louis, pp 38–96

    Google Scholar 

  75. Arends J, Ten Cate JM (1981) Tooth enamel remineralization. J Crystal Growth 53:135–147

    Article  CAS  Google Scholar 

  76. Speirs RL (1971) The nature of surface enamel in human teeth. Calcif Tissue Res 8:1–16

    Article  PubMed  CAS  Google Scholar 

  77. Moore CB, Smith IWM (1979) Vibrational-rotational excitation. Chemical reactions of vibrationally excited molecules. Faraday Disc Chem Soc 67:146–161

    Article  CAS  Google Scholar 

  78. Steinfeld JI (1981) Laser-induced chemical reactions: survey of the literature, 1965–1979. In: Steinfeld JI (ed) Laser-induced chemical processes. Plenum Press, New York, pp 243–267

    Google Scholar 

  79. Letokhov VS (1983) Nonlinear laser chemistry. Multiple-photon excitation. Springer Ser. Chem. Phys., Vol. 22, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  80. Brown WL (1984) Fundamentals of energy beam interactions with solids. In: Fan JCC, Johson NM (eds) Energy beam-solid interactions and transient thermal processing (Mat Res Soc Symp Proc, Vol. 23). Elsevier Science Publishing Co., New York, pp 9–22

    Google Scholar 

  81. Van Vechen JA (1984) Laser-solid interactions: localization of momentum and of energy. In: Fan JCC, Johnson NM (eds) Energy beam-solid interactions and transient thermal processing (Mat Res Soc Symp Proc, Vol. 23). Elsevier Science Publishing Co., New York, pp 81–92

    Google Scholar 

  82. Taylor R, Shklar G, Roeber F (1965) The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals. Oral Surg 19:786–795

    Article  PubMed  CAS  Google Scholar 

  83. Stern RH, Renger HL, Howell FV (1969) Laser effects on vital dental pulps. Br Dent J 127:26–28

    PubMed  CAS  Google Scholar 

  84. Adrian JC, Bernier JL, Sprague WG (1971) Laser and the dental pulp. J Am Dent Assoc 83:113–117

    PubMed  CAS  Google Scholar 

  85. Yamamoto H, Okabe H, Ooya K, Hanaoka S (1973) Laser effect on vital oral tissues: a preliminary investigation. J Oral Pathol 1:256–264

    Article  Google Scholar 

  86. Lenz P, Pyttel U-J, Gilde H (1977) Morphologische Untersuchungen zur Wirkung der Laserstrahlung auf Pulpa und Mundschleimhaute. Dtsch Zahnärztl Z 32:508–511

    PubMed  CAS  Google Scholar 

  87. Boehm RF, Chen MJ, Blair CK (1975) Temperatures in human teeth due to laser heating. ASME Paper 75-WA/Bio-8. Am Soc Mechanical Eng, New York

    Google Scholar 

  88. Sakurai K (1983) National project on development of laser surgical units in Japan. In: Atsumi K (ed) New frontiers in laser medicine and surgery. Exerpta Medica Amsterdam, pp 68–80

    Google Scholar 

  89. Beckman H, Fuller TA (1983) Carbon dioxide laser fiber optics in endoscopy. In: Atsumi K (ed) New frontiers in laser medicine and surgery. Exerpta Medica, Amsterdam, pp 76–80.

    Google Scholar 

  90. Gregory TM, Moreno EC, Patel JM, Brown WE (1974) Solubility of β-Ca3(PO4)2 in the system Ca(OH)2−H3PO4−H2O at 5, 15, 25 and 37°C. J Res Natl Bur Stand 78A:667–673

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, B.O., Kuroda, S. Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 38, 197–208 (1986). https://doi.org/10.1007/BF02556711

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556711

Key words

Navigation