Skip to main content
Log in

Motion-onset visual evoked potentials improve the diagnosis of glaucoma

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chronic glaucoma has been shown preferentially to damage larger retinal cells and optic nerve fibres that provide the input to the magnocellular visual pathway. We compared the motion-onset visual evoked potentials (primarily the magnocellular system) with those to standard pattern reversal in 20 patients with bilateral chronic glaucoma. For motion-onset visual evoked potentials, the pattern (isolated 40′ checks of 10% contrast) moved in four cardinal directions (varied randomly from trial to trial) at a velocity of 10 deg/s for 20 ms, with an interstimulus interval of 1 s. In pattern-reversal stimulation, the checkerboard reversed at a rate of 2 reversals per second. In 60% of the eyes investigated, the results of both types of visual evoked potentials correlated, showing either normal (27.5%) or increased (32.5%) latencies. In the remaining 40% of the eyes, the normal pattern-reversal visual evoked potential latencies were accompanied by prolonged motion-onset visual evoked potentials. The high occurrence of delayed motion-onset visual evoked potentials in our patients confirms the primary magnocellular loss in chronic glaucoma and suggests that the motion-onset VEPs are suitable for detection of glaucomatous changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibres. Ophthalmology 1988; 95: 357–63.

    PubMed  CAS  Google Scholar 

  2. Quigley HA, Sanchez RM, Dunkelberger GR, L'Hermaut NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibres. Invest Ophthalmol Vis Sci 1981; 28: 913–20.

    Google Scholar 

  3. Livingstone M, Hubel D. Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 1988; 240: 740–9.

    Article  PubMed  CAS  Google Scholar 

  4. Fitzke FW, Poinoosawmy D, Nagassubramanian S., Hitchings RA. Peripheral displacement thresholds in glaucoma and ocular hypertension. In: Heil A, ed. Perimetric update. Amsterdam: Kugler & Ghedini Publications, 1989: 399–452.

    Google Scholar 

  5. Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 1990; 31: 722–9.

    PubMed  CAS  Google Scholar 

  6. Joffe KM, Raymond JE, Crichton A. Motion perimetry in glaucoma. Invest Ophthalmol Vis Sci 1991; 32: 1103.

    Google Scholar 

  7. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma. Invest Ophthalmol Vis Sci 1993; 34: 3526–33.

    PubMed  CAS  Google Scholar 

  8. Kubová Z, Kuba M, Spekreijse H, Blakemore C. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 1995; 35: 197–205.

    Article  PubMed  Google Scholar 

  9. Kuba M, Kubová Z. Visual evoked potentials specific for motion-onset. Doc Ophthalmol 1992; 80: 83–9.

    Article  PubMed  CAS  Google Scholar 

  10. Kuba M, Toyonaga N, Kubová Z. Motion-reversal visual evoked responses. Physiol Res 1992; 41: 369–73.

    PubMed  CAS  Google Scholar 

  11. National Academy of Sciences-National Research Council Committee on Vision. Report of Working Group 39: recommended standard procedures for the clinical measurement and specification of visual acuity. Adv Ophthalmol 1980; 41: 103–48.

    Google Scholar 

  12. Towle VL, Moskowitz A, Sokol S, Schwartz B. The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Invest Ophthalmol Vis Sci 1983; 24: 175–83.

    PubMed  CAS  Google Scholar 

  13. Göpfert E, Schlykowa L, Müller R. Zur topographie des Bewegungs-VEP am Menschen. Z EBG-BMG 1988; 19: 14–8.

    Google Scholar 

  14. Sokol S, Domar A, Moskowitz A, Schwartz H. Pattern evoked potential latency and contrast sensitivity in glaucoma and ocular hypertension. Doc Ophthalmol Proc Ser 1981; 27: 79–86.

    Google Scholar 

  15. Howe JW, Mitchell KW. Simultaneous recording of pattern electroretinogram and visual evoked cortical potential in group of patients with glaucoma. Doc Ophthalmol Proc Ser 1984; 40: 101–7.

    Google Scholar 

  16. Howe JW, Mitchell KW. Visual evoked cortical potential to paracentral retinal stimulation in chronic glaucoma, ocular hypertension, and an age-matched group of normals. Doc Ophthalmol 1986; 63: 37–44.

    Article  PubMed  CAS  Google Scholar 

  17. Fernández-Tirado FJ, Ucles P, Pablo L, Honrubia FM. Electrophysiological methods in early glaucoma detection. Acta Ophthalmol 1994; 72: 168–74.

    Article  Google Scholar 

  18. Regan D. Steady-state evoked potentials. J Opt Soc Am 1977; 67: 1475–89.

    Article  PubMed  CAS  Google Scholar 

  19. Tobimatsu S, Tashima-Kurita S, Nakayama-Hiromatsu M, Kato M. Clinical relevance of phase of steady-state VEPs to P100 latency of transient VEPs. Electroencephalogr Clin Neurophysiol 1991; 80: 89–93.

    Article  PubMed  CAS  Google Scholar 

  20. Strasburger H. The analysis of steady-state evoked potentials revisited. Clin Vision Sci 1987; 1: 245–56.

    Google Scholar 

  21. Bray LCH, Mitchell KW, Howe JH, Gashau A. Visual function in glaucoma: a comparative evaluation of computerised static perimetry and the pattern visual evoked potential. Clin Vision Sci 1992; 7: 21–9.

    Google Scholar 

  22. Baez KA, McNaught AI, Dowler JGF, Poinoosawy D, Fitzke FW, Hitchins RA. Motion detection threshold and field progression in normal tension glaucoma. Br J Ophthalmol 1995; 79: 125–8.

    PubMed  CAS  Google Scholar 

  23. Kubová Z, Kuba M, Juran J, Blakemore C. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res 1996; 36: 181–90.

    Article  PubMed  Google Scholar 

  24. Kubová Z, Kuba M. Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 1992; 81: 209–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubová, Z., Kuba, M., Hrochová, J. et al. Motion-onset visual evoked potentials improve the diagnosis of glaucoma. Doc Ophthalmol 92, 211–221 (1996). https://doi.org/10.1007/BF02583292

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02583292

Key words

Navigation