Skip to main content
Log in

Immortalization of human mammary epithelial cells by SV40 large T-antigen involves a two step mechanism

  • Letter To The Editor
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allsop, R. C.; Vaziri, H.; Patterson, C., et al. Telomere length predicts replicative capacity of human fibroblast. Proc. Natl. Acad. Sci. USA 89:10114–10118; 1992.

    Article  Google Scholar 

  2. Band, V.; De Caprio, J. A.; Delmolino, L., et al. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J. Virology 65:6671–6676; 1991.

    PubMed  CAS  Google Scholar 

  3. Bartek, J.; Taylor-Papadimitriou, J.; Miller, N., et al. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int. J. Cancer 36:299–306; 1985.

    PubMed  CAS  Google Scholar 

  4. Blackburn, E. H. Telomerase. Annu. Rev. Biochem. 61:113–129; 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Gendler, S.; Taylor-Papadimitriou, J.; Duhig, T., et al. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 263:12820–12823; 1988.

    PubMed  CAS  Google Scholar 

  6. Greider, C. W. Telomeres, telomerase and senescence. Bioessay 12:363–369; 1990.

    Article  CAS  Google Scholar 

  7. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Harley, C. B.; Futcher, A. B.; Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Harley, C. B. Telomere loss: the mitotic clock or genetic time bomb. Mut. Res. 256:271–282; 1991.

    CAS  Google Scholar 

  10. Hastie, N. D.; Dempster, M.; Dunlop, M. G., et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621; 1961.

    Article  Google Scholar 

  12. Morin, G. B. The human telomere terminal transferase is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529; 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Kipling, D.; Cooke, H. J. Beginning or end? Telomere structure, genetics and biology. Human Mol. Gen. 1:3–6; 1992.

    Article  CAS  Google Scholar 

  14. Pollock, R. E. Evaluation and treatment of soft-tissue sarcoma. The Cancer Bulletin 44:268–274; 1992.

    Google Scholar 

  15. Shay, J. W.; Wright, W. E. Quantitation of the frequency of immortalization of normal diploid fibroblasts by SV40 large T-antigen. Exp. Cell Res. 184:109–118; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Shay, J. W.; Wright, W. E.; Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochimica et Biophysica Acta 1072:1–7; 1991.

    PubMed  CAS  Google Scholar 

  17. Shay, J. W.; Pereira-Smith, O. M.; Wright, W. E. A role for both Rb and p53 in the regulation of human cellular senescence. Exper. Cell Res. 196:33–39; 1991.

    Article  CAS  Google Scholar 

  18. Shay, J. W.; Wright, W. E.; Braiskyte, D., et al. E6 of human papillomavirus 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not human fibroblasts. Oncogene. In press; 1993.

  19. Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Gen. 1:327–341; 1980.

    Google Scholar 

  20. Stampfer, M. R.; Hallowes, R. C.; Hackett, A. J. Growth of normal human mammary cells in culture. In Vitro 16:415–425; 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Stein, G. H. SV40-transformed human fibroblasts: evidence for cellular aging in precrisis cells. J. Cell Physiol. 125:36–44; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor-Papadimitriou, J.; Glendler, S. J. Molecular aspects of mucins. Cancer Rev. 11:11–24; 1989.

    Google Scholar 

  23. Vogelstein, B.; Fearon, E. R.; Baker, S. J., et al. In: Cavenee, N.; Hastie, N.; Stanbridge, E., eds. Current communications in molecular biology, recessive oncogenes and tumor suppression. Cold Spring Harbor Laboratory Press; 1978:73–80.

  24. Wright, W. E.; Pereira-Smith, O. M.; Shay, J. W. Reversible cellular senescence: a two-stage model for the immortalization of normal human diploid fibroblasts. Mol. Cell. Biol. 9:3088–3092; 1989.

    PubMed  CAS  Google Scholar 

  25. Wright, W. E.; Shay, J. W. Telomere positional effects and the regulation of cellular senescence. Trends in Gen. 8:193–197; 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Haegen, B.A., Shay, J.W. Immortalization of human mammary epithelial cells by SV40 large T-antigen involves a two step mechanism. In Vitro Cell Dev Biol - Animal 29, 180–182 (1993). https://doi.org/10.1007/BF02634177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634177

Keywords

Navigation