Skip to main content
Log in

The effect of mechanical strain on fetal rat lung cell proliferation: Comparison of two-and three-dimensional culture systems

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Normal growth of the fetal lung is dependent on fetal breathing movements. We have previously reported that an intermittent strain, which simulates normal fetal breathing movements, stimulates DNA synthesis and cell division of mixed fetal rat lung cells maintained in organotypic cultures. To examine which cell type is responding to mechanical strain and to investigate whether the effects of strain on cell proliferation and mechanotransduction are affected by tissue architecture, we isolated fetal lung cells and subjected them to intermittent strain either as two-dimensional monolayer cultures or as three-dimensional organotypic cultures. Strain enhanced DNA synthesis of mixed cells, epithelial cells, and fibroblasts when cultured in a three-dimensional configuration. In contrast, no stimulatory effect on cell proliferation was observed depending on the culture conditions. These results suggest that mechanical strain stimulates the proliferation of both epithelial cells and fibroblasts and that the response of fetal lung cells to mechanical strainin vitro depends on cellular architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absher, M. Fibroblasts. In: Massaro, D., ed. Lung cell biology. Lung biology in health and disease. Vol. 41. New York: Marcel Dekker; 1989:401–439.

    Google Scholar 

  2. Banes, A. J.; Link, G. W.; Gilbert, J. W., et al. Culturing cells in a mechanically active environment. Am. Biotechnol. Lab. 8:12–22; 1990.

    PubMed  CAS  Google Scholar 

  3. Bertalanffy, F. D.; Leblond, C. P. The continuous renewal of the two types of alveolar cells in the lung of the rat. Anat. Rec. 115:515–541; 1953.

    Article  PubMed  CAS  Google Scholar 

  4. Bialecki, R. A.; Kulik, T. J.; Colucci, W. S. Stretching increases calcium influx and efflux in pulmonary arterial smooth muscle cells. Am. J. Physiol. 263:L602-L606; 1992.

    PubMed  CAS  Google Scholar 

  5. Bishop, J. E.; Mitchell, J. J.; Absher, P. M., et al. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity. Am. J. Respir. Cell Mol. Biol. 9:126–133; 1993.

    PubMed  CAS  Google Scholar 

  6. Bissell, M. J. Extracellular matrix directs tissue-specific genes: implications for development and breast cancer. Mol. Biol. Cell 4:115 (abstr); 1993.

    Google Scholar 

  7. Blau, H.; Guzowski, D. E.; Siddiqui, Z. A., et al. Fetal type 2 pneumocytes form alveolar like structures and maintain long term differentiation on extracellular matrix. J. Cell. Physiol. 136:203–214; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Boitano, S.; Dirksen, E. R.; Sanderson, M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295; 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Bowden, D. H.; Davies, E.; Wyatt, J. P. Cytodynamics of pulmonary alveolar cells in the mouse. Arch. Pathol. 86:667–670; 1968.

    PubMed  CAS  Google Scholar 

  10. Caniggia, I.; Tseu, I.; Han, R. N. N., et al. Spatial and temporal differences in fibroblast behaviour in fetal rat lung. Am. J. Physiol. 261:L424-L433; 1991.

    PubMed  CAS  Google Scholar 

  11. Chwalinski, S.; Potten, C. S.; Evans, G. Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation. Cell Tissue Kinet. 21:317–329; 1988.

    PubMed  CAS  Google Scholar 

  12. Culling, C. F. A.; Allison, R. T.; Barr, W. T. Cellular pathology technique. London: Butterworths; 1984:513–520.

    Google Scholar 

  13. Douglas, W. H. J.; Teel, R. W. An organotypic in vitro model system for studying pulmonary surfactant production by Type II pneumocytes. Am. Rev. Respir. Dis. 113:1723–1728; 1976.

    Google Scholar 

  14. Elsdale, T.; Bard, J. Collagen substrata for studies on cell behaviour. J. Cell Biol. 54:626–637; 1972.

    Article  PubMed  CAS  Google Scholar 

  15. Fewell, J. E.; Lee, C. C.; Kitterman, J. A. Effects of phrenic nerve section on the respiratory system of fetal lambs. J. Appl. Physiol. 51:293–297; 1981.

    PubMed  CAS  Google Scholar 

  16. Finegold, M. J.; Katzew, H.; Genieser, N. B., et al. Lung structure in thoracic dystrophy. Am. J. Dis. Child. 122:153–159; 1971.

    PubMed  CAS  Google Scholar 

  17. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  18. George, D. K.; Cooney, T. P.; Chiu, B. K., et al. Hypoplasia and immaturity of the terminal lung unit (acinus) in congenital diaphragmatic hernia. Am. Rev. Respir. Dis. 136:947–950; 1987.

    PubMed  CAS  Google Scholar 

  19. Geppert, E. F.; Williams, M. C.; Mason, R. J. Primary culture of rat alveolar type II cells on floating collagen membranes. Exp. Cell Res. 128:363–374; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Goto, F.; Goto, K.; Weindel, K., et al. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gel. Lab. Invest. 69:508–517; 1993.

    PubMed  CAS  Google Scholar 

  21. Guzowski, D. E.; Blau, H.; Bienkowski, R. S. Extracellular matrix in developing lung. In: Scarpelli, E., ed. Pulmonary physiology of the fetus, newborn, child and adolescent. Malvern, PA: Lea & Febiger; 1989:83–105.

    Google Scholar 

  22. Harding, R. Fetal breathing movements. In: Crystal, R. G.; West, J. B., eds. The lung: scientific foundations. New York: Raven Press; 1991:1655–1664.

    Google Scholar 

  23. Ingber, D. E.; Folkman, J. Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. In: Stein, W. D.; Bronner, F., eds. Cell shape: determinants, regulation and regulatory role. San Diego, CA: Academic Press; 1989:3–31.

    Google Scholar 

  24. Jassal, D.; Han, R. N. N.; Caniggia, I., et al. Growth of distal fetal rat lung epithelial cells in a defined serum-free medium. In Vitro Cell. Dev. Biol. 27A:625–632; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Kitterman, J. A. Physiological factors in fetal lung growth. Can. J. Physiol. Pharmacol. 66:1122–1128; 1987.

    Google Scholar 

  26. Leslie, C. C.; McCormick-Shannon, K.; Mason, R. J., et al. Proliferation of rat alveolar epithelial cells in low density primary culture. Am. J. Respir. Cell Mol. Biol. 9:64–72; 1993.

    PubMed  CAS  Google Scholar 

  27. Liggins, G. C.; Vilos, G. A.; Campos, G. A., et al. The effect of spinal cord transection on lung development in fetal sheep. J. Dev. Physiol. 3:267–274; 1981.

    PubMed  CAS  Google Scholar 

  28. Liggins, G. C.; Vilos, G. A.; Campos, G. A., et al. The effect of bilateral thoracoplasty on lung development in fetal sheep. J. Dev. Physiol. 3:275–282; 1981.

    PubMed  CAS  Google Scholar 

  29. Liu, M.; Skinner, S. J. M.; Xu, J., et al. Stimulation of fetal rat lung cell proliferation in vitro by mechanical strain. Am. J. Physiol. 263:L376-L383; 1992.

    PubMed  CAS  Google Scholar 

  30. Liu, M.; Xu, J.; Liu, J., et al. Mechanical strain on fetal lung cells activates protein kinase C through phospholipases C and D. Am. J. Physiol.; 268:L729-L738; 1995.

    PubMed  CAS  Google Scholar 

  31. Liu, M.; Xu, J.; Tanswell, A. K., et al. Stretch-induced growth-promoting activities stimulate fetal rat lung epithelial cell proliferation. Exp. Lung Res. 19:505–517; 1993.

    PubMed  CAS  Google Scholar 

  32. Liu, M.; Xu, J.; Tanswell, A. K., et al. Inhibition of strain-induced fetal rat lung cell proliferation by gadolinium, a stretch-activated channel blocker. J. Cell. Physiol. 161:501–507; 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Madri, J. A.; Pratt, B.; Tucker, A. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Paine, R., III; Joyce-Brady, M.; Clement, A., et al. Serum accelerates the loss of type II cell differentiation in vitro. Am. J. Respir. Cell Mol. Biol. 3:311–323; 1990.

    PubMed  Google Scholar 

  35. Rabinovitch, M.; Bothwell, T.; Mullen, M., et al. High-pressure pulsation of central and microvessel pulmonary artery endothelial cells. Am. J. Physiol. 254:C338-C343; 1988.

    PubMed  CAS  Google Scholar 

  36. Rannels, D. E. Role of physical forces in compensatory growth of the lung. Am. J. Physiol. 257:L179-L189; 1989.

    PubMed  CAS  Google Scholar 

  37. Rannels, D. E.; Rannels, S. R. Influence of the extracellular matrix on type II cell differentiation. Chest 96:165–173; 1989.

    PubMed  CAS  Google Scholar 

  38. Riley, D. J.; Rannels, D. E.; Low, R. B., et al. Effect of physical forces on lung structure, function, and metabolism. Am. Rev. Respir. Dis. 142:910–914; 1990.

    PubMed  CAS  Google Scholar 

  39. Schneeberger, E. E. Alveolar type I cells. In: Crystal, R. G.; West, J. B., eds. The lung: scientific foundations. New York: Raven Press; 1991:229–234.

    Google Scholar 

  40. Scott, J. E.; Yang, S.-Y.; Stanik, E., et al. Influence of strain on [3H]thymidine incorporation, surfactant phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am. J. Respir. Cell Mol. Biol. 8:258–265; 1993.

    PubMed  CAS  Google Scholar 

  41. Simpson, L. L.; Tanswell, A. K.; Joneja, M. G. Epithelial cell differentiation in organotypic cultures of fetal rat lung. Am. J. Anat. 172:31–40; 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Skinner, S. J. M. Fetal breathing movements: a mechanical stimulus for fetal lung cell growth and differentiation. In: Johnston, B. M.; Gluckman, P. D., eds. Research in perinatal medicine (VIII). Advances in fetal physiology. Ithaca, NY: Perinatology Press; 1989:133–141.

    Google Scholar 

  43. Smith, P. G.; Janiga, K. E.; Bruce, M. C. Strain increases airway smooth muscle cell proliferation. Am. J. Respir. Cell Mol. Biol. 10:85–90; 1994.

    PubMed  CAS  Google Scholar 

  44. Snedecor, G. W.; Cochrane, W. G. Statistical methods. Ames, IA: Iowa State University Press; 1980.

    Google Scholar 

  45. Tanswell, A. K.; Byrne, P. J.; Han, R. N. N., et al. Limited division of low-density adult rat type II pneumocytes in serum-free culture. Am. J. Physiol. 260:L395-L402; 1991.

    PubMed  CAS  Google Scholar 

  46. Williams, S. Angiogenesis in three-dimensional cultures. Lab. Invest. 69:491–493; 1993.

    PubMed  CAS  Google Scholar 

  47. Wirtz, H. R. W.; Dobbs, L. G. Calcium mobilization and exocytosis after one mechanical strain of lung epithelial cells. Science 250:1266–1269; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Xu, J., Souza, P. et al. The effect of mechanical strain on fetal rat lung cell proliferation: Comparison of two-and three-dimensional culture systems. In Vitro Cell Dev Biol - Animal 31, 858–866 (1995). https://doi.org/10.1007/BF02634570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634570

Key words

Navigation