Skip to main content
Log in

Tortuosity and atherosclerosis in the femoral artery: What is cause and what is effect?

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Earlier studies have demonstrated a correlation between tortuosity and atherosclerosis in the femoral artery. One conceivable explanation is that atherosclerosis causes an elongation of the artery, resulting in vessel tortuosity; another is that blood flow phenomena (such as flow separation) due to the vessel geometry may affect the progression of atherosclerosis. To determine which of these hypotheses is most likely, a group of 232 hyperlipidemic patients was followed with angiography for 3 years during lipid-lowering treatment. After digitization of the films, a tortuosity value and an atherosclerosis measure (edge roughness) were computed. In the group with lower tortuosity values, there was a significant (p<0.0001) decrease in edge roughness, but not in the group with a higher tortuosity values. On the other hand, neither the group with higher edge roughness values nor that with lower edge roughness values displayed a significant change in tortuosity. When tortuosity, roughness, and treatment were studied simultaneously, only the effect of tortuosity on roughness change was significant. These findings are more consistent with tortuosity influencing the development of atherosclerosis than with its being a consequence of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergstrand, L., A. Olsson, U. Erikson, I. Holme, J. Johansson, L. Kaijser, C. Mögaard, S. Nilsson, G. Stenport, and G. Walldius. The relation of coronary and peripheral arterial disease to severity of femoral atherosclerosis in hypercholesteroleamia.J. Intern. Med. 236:367–375, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Brinkman, A., P. Baker, W. Newman, R. Vigorito, and M. Friedman. Variability of human coronary artery geometry: An angiographic study of the left anterior descending arteries of 30 autopsy hearts.Ann. Biomed. Eng. 22:34–44, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis.Proc. R. Soc. Lond. B 177:109–159, 1971.

    PubMed  CAS  Google Scholar 

  4. Cavalcanti, S., Flow patterns and wall shear stress in a mildly stenosed femoral artery. In: Third International Symposium on Biofluid Mechanics. Munich: VDI Verlag, 1994. pp. 613–618.

    Google Scholar 

  5. Chilvers, A. S., M. L. Thomas, and N. L. Browse. The progression of atherosclerosis: A radiologic study.Circulation 50:402–408, 1974.

    PubMed  CAS  Google Scholar 

  6. Crawford, D. W., S. H. Brooks, R. H. Selzer, R. Barndt, E. S. Beckenbach, and D. H. Blankenhorn. Computer densitometry for angiographic assessment of arterial cholesterol content and gross pathology in human atherosclerosis.J. Lab. Clin. Med. 89:378–392, 1977.

    PubMed  CAS  Google Scholar 

  7. Fox, B., and W. A. Seed. Location of early atheroma in the human coronary arteries.ASME J. Biomech. Eng. 103:208–212, 1981.

    CAS  Google Scholar 

  8. Friedman, M. H., and O. J. Deters. Correlation among shear rate measures in vascular flows.ASME J. Biomech. Eng. 109:25–26, 1987.

    Article  CAS  Google Scholar 

  9. Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis.Atherosclerosis 46:225–231, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Friedman, M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters, and F. F. Mark. Correlation between intimal thickness and fluid shear in human arteries.Atherosclerosis 39: 425–436, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress.Arteriosclerosis 5:293–302, 1985.

    PubMed  CAS  Google Scholar 

  12. Newman, D., and C. Wenn. Arterial tortuosity. In: International Symposium of the Role of Blood Flow in Atherogenesis. Tokyo: Springer Verlag, 1988, pp. P25-P28.

    Google Scholar 

  13. Nilsson, S., and U. Erikson. Changes in atheroma volume estimated from digitized femoral arteriograms.Acta Radiol. 31:249–257, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Sabbah, H. N., F. Khaja, E. T. Hawkins, J. F. Brymer, T. M. McFarland, J. v.d. Bel-Kahn, P. T. Doerger, and P. D. Stein. Relation of atherosclerosis to arterial wall shear in the left anterior descending coronary artery of man.Am. Heart J. 112:453–458, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Smedby, Ö., L. Fuchs, and N. Tillmark, Separated flow demonstrated by digitized cineangiography compared with LDV.J. Biomech. Eng. 113:336–341, 1991.

    PubMed  CAS  Google Scholar 

  16. Smedby, Ö., N. Högman, S. Nilsson, U. Erikson, A. G. Olsson, and G. Walldius. Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis.J. Vasc. Res. 30:181–191, 1993.

    PubMed  CAS  Google Scholar 

  17. Smedby, Ö., J. Johansson, J. Mölgaard, A. G. Olsson, G. Walldius, and U. Erikson. Predilection of atherosclerosis for the inner curvature in the femoral artery—a digitized angiography study.Arterioscler. Thromb. Vasc. Biol. 15: 912–917, 1995.

    PubMed  CAS  Google Scholar 

  18. Smedby, Ö., S. Nilsson, and L. Bergstrand. Development of femoral atherosclerosis in relation to flow disturbances.J. Biomech. 29:543–547, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Tjøtta, E. The distribution of atheromatosis in the coronary arteries.J. Atheroscler. Res. 3:253–261, 1963.

    Article  PubMed  Google Scholar 

  20. Walldius, G., U. Erikson, A. G. Olsson, L. Bergstrand, K. H»del, J. Johansson, J. Kaijser, C. Lassvik, J. Mölgaard, S. Nilsson, L. Schäfer-Elinder, G. Lassvik, I. Holme. The effect of probucol on femoral atherosclerosis. The Probucol Quantitative Regression Swedish Trial (PQRST).Am. J. Cardiol. 74:875–883, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Willis, G. C. Localizing factors in atherosclerosis.Can. Med. Assoc. J. 70:1–9, 1954.

    PubMed  CAS  Google Scholar 

  22. Yamaguchi, T., and S. Hanai. To what extent does a minimal atherosclerotic plaque alter the arterial wall shear stress distribution? A model study by an electrochemical method.Biorheology 25:31–36, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smedby, Ö., Bergstrand, L. Tortuosity and atherosclerosis in the femoral artery: What is cause and what is effect?. Ann Biomed Eng 24, 474–480 (1996). https://doi.org/10.1007/BF02648109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648109

Keywords

Navigation