Skip to main content
Log in

Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In order to study potential changes in phosphodiesterase (PDE) activity associated with malignant transformation, normal primary keratinocytes and cells corresponding to different stages of epidermal tumor development in mouse skin were analyzed with respect to their 3′,5′-cyclic adenosine monophosphate (cAMP) hydrolyzing activity. Expression of cAMP-specific PDE-4, intracellular cAMP content, and the sensitivity to the growth inhibitory effect of the PDE-4-specific inhibitor 7-benzylamino-6-chloro-2 piperazino-4-pyrrolidino-pteridine (DC-TA-46) were studied in the two papilloma cell lines, MSCP6 and 308, and in the highly malignant carcinoma cell line CarB. No significant difference in soluble PDE activity and in intracellular cAMP was found in the two papilloma cell lines when compared to primary keratinocytes. In contrast, the spindle-cell carcinoma cell line CarB exhibited significantly higher PDE activity, concomitant with the lowest cAMP level. In all cell lines and also in the primary keratinocytes, rolipram-sensitive PDE-4 activity accounted for the major cAMP-hydrolyzing activity. In primary keratinocytes and in MSCP6 cells, the PDE-4 inhibitor DC-TA-46 induced at best marginal growth inhibition, whereas cell growth of 308 cells was markedly affected at concentrations >2 μM. The carcinoma cell line CarB showed the highest sensitivity to DC-TA-46 (IC50=0.8±0.3 μM). Treatment of CarB cells with DC-TA-46 strongly inhibits intracellular PDE activity, resulting in a marked and long-lasting rise of cAMP. After 24 h of treatment, arrest in the G0/G1 phase of the cell cycle is induced. Treatment with concentrations >2 μM of this highly effective PDE inhibitor results in induction of apoptotic cell death, as detected by fluorescence microscopy, flow cytometry, and ELISA-based determination of fragmented DNA in intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine monosphosphate

cGMP:

cyclic guanosine monophosphate

DAPI:

4′,6-diamidino-2-phenylindol-dihydrochloride

DC-TA-46:

7-benzylamino-6-chloro-2-piperazino-4-pyrrolidino-pteridine

DMBA:

7,12-dimeth ylbenz(a)anthracene

EHNA:

erythro-9-(2-hydroxy-3-nonyl) adenine

Milrinone:

1,6-dihydro-2-methyl-6-oxo-(3,4′-bipyridine)-5-carbonitril

Motapizone:

4,5-dihydro-6-(4-[1H-imidazol-1-yl]-2-thienyl)-5-methyl-3-(2H)-pyridazinone

NCS:

newborn calf serum

PDE:

phosphodiesterase

RO 20-1724:

4-(3-butoxy-4-methoxybenzyl)-2-imidazolidone

rolipram:

4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone

SR 101:

Sulforhodamine 101

SRB:

sulforhodamine B

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

vinpocetine:

14-eburnamenine-carboxylic acid ethyl ester

zaprinast:

2-O-propoxyphenyl-8-azapurin-6-one

References

  1. Drees, M., Zimmermann, R., and Eisenbrand, G. (1993) 3′,5′-Cyclic nucleotide phosphodiesterase in tumor cells as potential target for tumor growth inhibition.Cancer Res. 53, 3058–3061.

    PubMed  CAS  Google Scholar 

  2. McConkey, D. J., Jondal, M., and Orrenius, S. (1992) Cellular signaling in thymocyte apoptosis.Semin. Immunol. 4, 371–377.

    PubMed  CAS  Google Scholar 

  3. McConkey, D. J., Orrenius, S., and Jondal, M. (1990) Agents that elevate cAMP stimulate DNA fragmentation in thymocytes.J. Immunol. 145(4), 1227–1230.

    PubMed  CAS  Google Scholar 

  4. Jiang, X., Li, J., Paskind, M., and Epstein, P. M. (1996) Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells.Proc. Natl. Acad. Sci. USA 93, 11,236–11,241.

    CAS  Google Scholar 

  5. Boyton, A. L. and Whitfield, J. F. (1983) The role of cyclic AMP in cell proliferation: a critical assessment of the evidence.Adv. Cyclic Nucleotide Res. 15, 193–294.

    Google Scholar 

  6. Lando, M., Abemayor, E., Verity, M. A., and Sidell, N. (1990) Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells.Cancer Res. 50, 722–727.

    PubMed  CAS  Google Scholar 

  7. Hickie, R. A., Walker, C. M., and Crolli, G. A. (1974) Decreased basal cyclic adenosine 3′, 5′-monophosphate levels in Morris hepatoma 5123 T.C.Biochem. Biophys. Res. Commun. 59, 167–173.

    Article  PubMed  CAS  Google Scholar 

  8. Gottesman, M. M. and Fleischmann, R. D. (1986) The role of cAMP in regulating tumour cell growth.Cancer Surveys 5(2), 291–308.

    PubMed  CAS  Google Scholar 

  9. Monaco, L., Vicini, E., and Conti, M. (1994) Structure of two rat genes coding for closely related Rolipram-sensitive cAMP phosphodiesterases.J. Biol. Chem. 269(1), 347–357.

    PubMed  CAS  Google Scholar 

  10. Beavo, J. A., Conti, M., and Heaslip, R. J. (1994) Multiple cyclic nucleotide phosphodiesterases.Mol. Pharmacol. 46, 399–405.

    PubMed  CAS  Google Scholar 

  11. Beavo, J. A. and Reifnyder, D. H. (1990) Primary sequence of cyclic nucleotide phosphodiesterase isoenzymes and the design of selective inhibitors.Trends Pharmacol. Sci. 11, 150–155.

    Article  PubMed  CAS  Google Scholar 

  12. Conti, M., Nemoz, G., Sette, C., and Vicini, E. (1995) Recent progress in understanding the hormonal regulation of phosphodiesterases.Endocr. Rev. 16(3), 370–389.

    Article  PubMed  CAS  Google Scholar 

  13. Wells, J. N. and Miller, J. R. (1988) Methylxanthine inhibitors of phosphodiesterase.Methods Enzymol. 159, 489–496.

    Article  PubMed  CAS  Google Scholar 

  14. Podzuweit, T., Nennstiel, P., and Müller, A. (1995) Isoenzyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl)adenine.Cell. Signal. 7(7), 733–738.

    Article  PubMed  CAS  Google Scholar 

  15. Méry, P.-F., Pavoine, C., Pecker, F., and Fischmeister, R. (1995) Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes.Mol. Pharmacol. 48, 121–130.

    PubMed  Google Scholar 

  16. Michie, A. M., Lobban, M., Müller, T., Harnett, M. M., and Houslay, M. D. (1996) Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thy-mocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and Rolipram.Cell. Signal. 8(2), 97–110.

    Article  PubMed  CAS  Google Scholar 

  17. Harrison, S. A., Reifsnyder, D. H., Gallis, B., Cadd, G. G., and Beavo, J. A. (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs.Mol. Pharmacol. 29, 506–514.

    PubMed  CAS  Google Scholar 

  18. Singh, B., Bacon, E. R., Lesher, G. Y., Shaughnessy, R., Pennock, P. O., Bode, D. C., Pagani, E. D., Bentley, R. G., Connell, M. J., Hamel, L. T., and Silver, P. J. (1995) Novel and potent adenosine 3′,5′-cyclic phosphate phosphodiesterase III inhibitors: Thiazolo[4,5-b][1,6] naphthyridin-2-ones.J. Med. Chem. 38, 2546–2550.

    Article  PubMed  CAS  Google Scholar 

  19. Bolger, G. B. (1994) Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes.Cell. Signal. 6(8), 851–859.

    Article  PubMed  CAS  Google Scholar 

  20. Gillespie, P. G. and Beavo, J. A. (1989) Inhibition and stimulation of photoreceptor phosphodiesterase by dipyridamole and M&B 22,948.Mol. Pharmacol. 36, 773–781.

    PubMed  CAS  Google Scholar 

  21. Michaeli, T., Bloom, T. J., Martins, T., Loughney, K., Ferguson, K., Riggs, M., Rodgers, L., Beavo, J. A., and Wigler, M. (1993) Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient saccharomyces cervisiae.J. Biol. Chem. 268(17), 12,925–12,932.

    CAS  Google Scholar 

  22. Bloom, J. T. and Beavo, J. A. (1996) Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants.Proc. Natl. Acad. Sci. USA 93, 14,188–14,192.

    Article  CAS  Google Scholar 

  23. Fürstenberger, G. and Kopp-Schneider, A. (1995) Malignant progression of papillomas induced by the initiation-promotion protocol in NMRI mouse skin.Carcinogenesis 16, 61–69.

    Article  PubMed  Google Scholar 

  24. Stoler, A. B., Stenback, F., and Balmain, A. (1993) The conversion of mouse skin squamous cell carcinomas to spindle cell carcinomas is a recessive event.J. Cell. Biol. 122, 1103–1117.

    Article  PubMed  CAS  Google Scholar 

  25. Marks, F. and Fürstenberger, G. (1995) Tumor promotion in skin, inChemical Induction of Cancer: Modulation and Combination Effects (Arcos, J., ed.), Birkhäuser, Boston, pp. 125–160.

    Google Scholar 

  26. Kulesz-Martin, M., Kilkenny, A. E., Holbrook, K. A., Digernes, V., and Stuart, H. Y. (1993) Properties of carcinogen altered mouse epidermal cells resistant to calcium-induced terminal differentiation.Carcinogenesis 4(11), 1367–1377.

    Article  Google Scholar 

  27. Strickland, I. E., Greenhalgh, D. A., Koceva-Chyla, A., Digernes, V., and Yuspa, S. (1983) Development of murine epidermal cell lines which contain an activated rasHa oncogene and form papillomas in skin grafts on athymic nude mouse hosts.Carcinogenesis 4, 1367–1377.

    Article  Google Scholar 

  28. Haddow, S., Fowlis, D. J., Parkinson, K., Akhurst, R. J., and Balmain, A. (1991) Loss of growth control by TGF-b occurs at a late stage of mouse skin carcinogenesis and is independent ofras gene activation.Oncogene 6, 1465–1470.

    PubMed  CAS  Google Scholar 

  29. Fürstenberger, G., Gross, M., Schweizer, J., Vogt, I., and Marks, F. (1986) Isolation, characterization, and invitro cultivation of subfractions of neonatal mouse keratinocytes: effects of phorbol esters.Carcinogenesis 7, 1745–1753.

    Article  PubMed  Google Scholar 

  30. Pöch, N. (1971) Assay of PDE with radioactively labeled cAMP as substrate. Naunyn Schmiedebergs Arch.Pharmacol. 268, 272–299.

    Article  PubMed  Google Scholar 

  31. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D. Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. (1990) New colorometric assay for anticancer-drug screening.JNCI 82, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  32. Torphy, T. J. and Cieslinski, L. B. (1990) Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isoenzymes in canine tracheal smooth muscle.Mol. Pharmacol. 37(2), 206–214.

    PubMed  CAS  Google Scholar 

  33. Alvarez, R., Sette, C., Yang, D., Eglen, R. M., Wilhelm, R., Shelton, E. R., and Conti, M. (1995) Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE-4D3.Mol. Pharmacol. 48, 616–622.

    PubMed  CAS  Google Scholar 

  34. Millis, A. J. T., Forrest, G., and Pious, D. A. (1974) Cyclic AMP-dependent regulation of mitosis in human lymphoid cells.Exp. Cell Res. 83, 335–343.

    Article  PubMed  CAS  Google Scholar 

  35. Ralph, R. K. (1983) Cyclic AMP, calcium and control of cell growth.FEBS Lett. 161(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  36. Vintermyr, O. K., Gjertsen, B. T., Lanotte, M., and Døskeland, S. O. (1993) Microinjected catalytic subunit of cAMP-dependent protein kinase induces apoptosis in myeloid leukemia (IPC-81) cells.Exp. Cell. Res. 206, 157–161.

    Article  PubMed  CAS  Google Scholar 

  37. Okuyama, K., Iwamoto, Y., Tanaka, K., Ito, Y., and Sugioka, Y. (1994) The inhibition of the invasion of human fibrosarcoma cells by cyclic AMP analogues and cholera toxin.Cancer J. 7(4, 150–156.

    CAS  Google Scholar 

  38. Revillon, B., Vandewalle, B., Hornez, L., and Lefebvre, J. (1993) Influence of cAMP on E-cadherin expression and cell surface heparan sulfate proteoglycan synthesis in human breast cancer cells.Anticancer Res. 13, 1625–1630.

    Google Scholar 

  39. Suh, B. S., Eisenbach, L., and Amsterdam, A. (1992) Adenosine 3′,5′-monophosphate suppresses metastatic spread in nude mice of steroidogenic rat granulosa cells transformed by simian virus-40 and Ha-ras.Endocrinology 131(1), 526–532.

    Article  PubMed  CAS  Google Scholar 

  40. Tzanakakis, G. N., Agarwal, K. C., and Vezeridis, M. P. (1993) Prevention of human pancreatic cancer cell-induced hepatic metastasis in nude mice by dipyridamole and its analog RA-233.Cancer 71(8), 2466–2471.

    Article  PubMed  CAS  Google Scholar 

  41. Iwamoto, Y., Reich, R., Nemeth, G., Yamada, Y., and Martin, G. R. (1993) Cyclic AMP decreases chemotaxis, invasiveness and lung colonization of H-ras transformed mouse fibroblasts.Clin. Exp. Metastasis 11, 492–501.

    Article  PubMed  CAS  Google Scholar 

  42. Zacharski, L. R., Moritz, T. E., Baczek, L. A., Rickles, F. R., Edwards, R. L., Forman, W. B., Forcier, R. J., Cornell, C. J., Haakenson, C. M., Ballard, H. S., Crum, E. D., Johnson, G. J., Levine, J., Hong, W. K., O'Donnell, J. F., Schilsky, R. L., Ringenberg, Q. S., Robert, F., Spaulding, M. B., Tornyos, K., Williams, C., Zucker, S., Faulkner, II., C. S., Eaton, W. L., and Hoppel, C. L. (1988) Effect of Mopidamol on survival in carcinoma of the lung and colon: final report of veterans administration cooperative study No. 188.JNCI 80(2), 8–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marko, D., Romanakis, K., Zankl, H. et al. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys 28, 75–101 (1998). https://doi.org/10.1007/BF02737806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737806

Index Entries

Navigation