Skip to main content
Log in

Amyloid deposits in pituitaries and pituitary adenomas: Immunohistochemistry andin situ hybridization

  • Original Article
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The patterns of deposition and immunoreactivity of interstitial amyloid were studied in 11 pituitary glands obtained at autopsy and 9 surgically resected pituitary adenomas using Congo red staining and a panel of antisera directed against 5 major amyloid fibril proteins and all pituitary hormones. The deposition pattern of amyloid in pituitary glands differed from that in adenomas but all amyloid deposits showed an immunostaining with anti-amyloid λ-light chain. The remaining antisera were immunonegative.In situ hybridization using an oligodeoxyribonucleotide-probe complementary to the mRNA coding for the constant region of human λ-light chain yielded no hybridization signals in the pituitaries or pituitary adenomas, excluding local synthesis and secretion of immunoglobulins. Since no case studied suffered from generalized Aλ-amyloidosis and adsorption of immunoglobulins to the unknown amyloid fribril protein of the pituitary seems to be unlikely, crossreaction of the polyclonal antisera with an undefined antigen is probable. The similar immunostaining properties of amyloid deposits in “normal” pituitaries and pituitary adenomas suggest they both originate from the same precursor protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohl J, Steinmetz H, Störkel S. Age-related accumulation of congophilic fibrillar inclusions in endocrine cells. Virchows Arch A 419:51–58, 1991.

    Article  CAS  Google Scholar 

  2. Saeger W, Warner R, Missmahl HP. Amyloidosen der Hypophyse im Sektionsgut. Häufigkeit, Verteilung und Korrelation zum Alter und zu Grundkrankheiten. Pathologe 4:177–182, 1983.

    PubMed  CAS  Google Scholar 

  3. Tashima T, Kitamoto T, Tateishi J, Ogomori K, Nakagaki H. Incidence and characterization of age related amyloid deposits in the human anterior pituitary gland. Virchows Arch A 412:323–327, 1988.

    Article  CAS  Google Scholar 

  4. Bell ET. Hyalinization of the islets of Langerhans in diabetes mellitus. Diabetes 1:341–344, 1952.

    PubMed  CAS  Google Scholar 

  5. Ehrlich JC, Ratner IM. Amyloidosis of the islets of Langerhans. Am J Pathol 38:49–59, 1961.

    PubMed  CAS  Google Scholar 

  6. Saeger W, Gerigk Ch, Missmahl HP, Lüdecke DK. Amyloidablagerungen in Hypophysenadenomen. Polarisationsoptische, immunhistologische und elektronenmikroskopische Untersuchungen. Pathologe 4:183–189, 1983.

    PubMed  CAS  Google Scholar 

  7. Westermark P, Grimelius L, Polak JM, Larsson LI, van Noorden S, Wilander E, Pearse AGE. Amyloid in polypeptide hormone-producing tumors. Lab Invest 37:212–215, 1977.

    PubMed  CAS  Google Scholar 

  8. Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84:8628–8632, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84:3881–3885, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Röcken C, Saeger W. Amyloid deposits of the pituitary in old age: correlation to histopathologic alterations. Endocr Pathol 5:183–190, 1994.

    Google Scholar 

  11. Linke RP. Immunochemical typing of amyloid deposits after microextraction from biopsies. Appl Pathol 3:18–28, 1985.

    PubMed  CAS  Google Scholar 

  12. Linke RP, Nathrath WBJ, Eulitz M. Classification of amyloid syndromes from tissue sections using antibodies against various amyloid fibril proteins: report of 142 cases. In: Glenner GG, Osserman EF, Benditt EP, Calkins E, Cohen AS, Zucker-Franklin D, eds. Amyloidosis. New York, NY: Plenum, 1986; 599–605.

    Google Scholar 

  13. van de Kaa CA, Hol PR, Huber J, Linke RP, Kooiker CJ, Gruys E. Diagnosis of the type of amyloid in paraffin wax embedded tissue sections using antisera against human and animal amyloid proteins. Virchows Arch A 408:649–664, 1986.

    Article  Google Scholar 

  14. Ogawa A, Sugihara S, Nakanishi Y, Suzuki S, Sasaki A, Hirato J, Nakazato Y. Intermediate filament expression in non-neoplastic pituitary cells. Virchows Arch B 58:331–340, 1990.

    PubMed  CAS  Google Scholar 

  15. Marin F, Stefaneanu L, Kovacs K. Folliculostellate cells of the pituitary. Endocr Pathol 2:180–192, 1991.

    Google Scholar 

  16. Günzl H-J, Saeger W. Immunogenic functions of folliculo-stellate cells of the normal human pituitary? Path Res Pract 183:634, 635, 1988.

    PubMed  Google Scholar 

  17. Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem 10:355–364, 1962.

    CAS  Google Scholar 

  18. Kazatchkine MD, Husby G, Araki S, Benditt EP, Benson MD, Cohen AS, Frangione B, Glenner GG, Natvig JB, Westermark P. Nomenclature of amyloid and amyloidosis— WHO-IUIS nomenclature subcommittee. Bull Who 71:105–108, 1993.

    Google Scholar 

  19. Linke RP. Monoclonal antibodies against amyloid fibril protein AA. Production, specificity, and use for immunohistochemical localization and classification of AA-type amyloidosis. J Histochem Cytochem 32:322–328, 1984.

    PubMed  CAS  Google Scholar 

  20. Linke RP. Immunohistochemical identification and cross reactions of amyloid fibril proteins in senile heart and amyloid in familial polyneuropathy. Lack of reactivity with cerebral amyloid in Alzheimer’s disease. Clin Neuropathol 1:172–182, 1982.

    PubMed  CAS  Google Scholar 

  21. Linke RP, Geisel O, Mann K. Equine cutaneous amyloidosis derived from an immunoglobulin λ-light chain. Immunohistochemical, immunochemical and chemical results. Biol Chem Hoppe-Seyler 372:835–843, 1991.

    PubMed  CAS  Google Scholar 

  22. Saeger W, Günzl H-J, Meyer M, Schulz C, Lüdecke DK. Immunohistological studies on clinical silent pituitary adenomas. Endocr Pathol 1:37–44, 1990.

    Article  Google Scholar 

  23. Hieter PA, Hollis GF, Korsmeyer SJ, Waldman TA, Leder P. Clustered arrangement of immunoglobulin lambda constant region genes in man. Nature 294:563–540, 1981.

    Article  Google Scholar 

  24. Hieter PA, Max EE, Siedman JG, Maizel JV, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22:197–207, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Fehr S, Ivel R, Schams D, Fields M, Richter D. Expression of the oxytocin gene in the large cells of the bovine corpus luteum. FEBS 210:45–50, 1987.

    Article  CAS  Google Scholar 

  26. Uhlig H, Saeger W, Fehr S, Lüdecke DK. Detection of growth hormone, prolactin and human β-chorionic gonadotropin messenger RNA in growth-hormone-secreting pituitary adenomas by in situ hybridization. Virchows Arch A 418:539–546, 1991.

    Article  CAS  Google Scholar 

  27. Wisden W, Morris BJ, eds. In situ hybridization with synthetic oligonucleotide probes. In: In situ hybridization. Applications for the brain. Academic, San Diego, CA, 1993; 1–32.

    Google Scholar 

  28. Landolt AM, Kleihues P, Heitz PU. Amyloid deposits in pituitary adenomas. Differentiation of two types. Arch Pathol Lab Med 111:453–458, 1987.

    PubMed  CAS  Google Scholar 

  29. Eick B, Röcken C, Saeger W, Linke RP. Intrazelluläres Amyloid in der Hypophyse und Nebenniere: Inzidenz, Struktur und Immunhistologie. Verh Dtsch Ges Pathol 77:570, 1993.

    Google Scholar 

  30. Weiss LM, Movahed LA, Chen YY, Shin SS, Stroup RM, Bui N, Estess P, Bindl JM. Detection of immunoglobulin light-chain mRNA in lymphoid tissues using a practical in situ hybridization method. Am J Pathol 137:979–988, 1990.

    PubMed  CAS  Google Scholar 

  31. Fujihara S, Balow JE, Costa JC, Glenner GG. Identification and classification of amyloid in formalin-fixed, paraffin-embedded tissue sections by the unlabeled immunoperoxidase method. Lab Invest 43:358–365, 1980.

    PubMed  CAS  Google Scholar 

  32. Glenner GG, Linke RP, Pollock PS. Systemic amyloidosis and immunoglobulins. In: Wegelius O, Pasternack A, eds. Amyloidosis. London, New York: Academic, 1976; 233–246.

    Google Scholar 

  33. Kubota T, Kuroda E, Yamashima T, Tachibana O, Kabuto M, Yamamoto S. Amyloid formation in prolactinoma. Arch Pathol Lab Med 110:72–75, 1986.

    PubMed  CAS  Google Scholar 

  34. Paetau A, Partanen S, Mustajoki P, Valtonen S, Pelkonen R, Wahlström T. Prolactinoma of the pituitary containing amyloid. Acta Endocrinologica 109:176–180, 1985.

    PubMed  CAS  Google Scholar 

  35. Schultz RT. Role of altered vascular permeability in amyloid formation. Am J Pathol 86:321–334, 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röcken, C., Uhlig, H., Saeger, W. et al. Amyloid deposits in pituitaries and pituitary adenomas: Immunohistochemistry andin situ hybridization. Endocr Pathol 6, 135–143 (1995). https://doi.org/10.1007/BF02739876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739876

Key Words

Navigation