Skip to main content
Log in

Lead disrupts eicosanoid metabolism, macrophage function, and disease resistance in birds

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb) affects elements of humoral and cell-mediated immunity, and diminishes host resistance to infectious disease. Evidence is presented supporting a hypothesis of Pb-induced immunosuppression stemming from altered fatty acid metabolism, and mediated by eicosanoids and macrophages (MØ). Chronic Pb exposure increases the proportion of arachidonate (ArA) among fatty acids in lipid from avian tissues, and this change provides precursors for eicosanoids, the oxygenated derivatives of ArA that mediate MØ acute inflammatory response. In the current study, we showed that the concentration of ArA in phospholipids of MØ elicited from turkey poults fed 100 ppm dietary Pb acetate was twice that of controls. In vitro production of eicosanoids by these MØ was substantially increased, and this effect was most pronounced following lipopolysaccharide stimulation: prostaglandin F was increased 11-fold, thromboxane B2 increased threefold, and prostaglandin E2 increased by 1.5 times. In vitro phagocytic potential of these MØ was suppressed, such that the percentage of MØ engulfing sheep red blood cell (RBC) targets was reduced to half that of control MØ. In vivo susceptibility of Pb-treated and control birds to Gram-negative bacteria challenge was also evaluated. The morbidity of chicks inoculated withSalmonella gallinarum and fed either control or 200 ppm Pb acetate-supplemented diets was similar, except early in the course of the disease when mortality among Pb-treated birds was marginally greater. In these studies, effects of Pb that could influence immunological homeostasis were demonstrated for MØ metabolism of ArA, for production of eicosanoids, and for phagocytosis. There was also the suggestion that these in vitro indices of immune function are related to in vivo disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Lawrence, inImmunotoxicology and Immunopharmacology, J. Dean, M. Luster, and A. Munson, eds., Raven, New York, pp. 341–353 (1985).

    Google Scholar 

  2. F. Hemphill, M. Kaeberle, and W. Buck,Science 173, 1031, 1032 (1971).

    Article  Google Scholar 

  3. J. Cook, E. Marconi, and N. DiLuzio,Toxicol. Appl. Pharmacol. 28, 292–302 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. N. I. Kerkvliet and L. Baecher-Steppan,Immunopharmacology 4, 213–224 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. J. Zelikoff, E. Parsons, and R. Schlesinger,Environ. Res. 62, 207–22 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. S. Dey, D. Swamp, and S. Dwivedi,Indian J. Anim. Sci. 64, 1335–1338 (1994).

    CAS  Google Scholar 

  7. M. Governa, M. Valentino, and I. Visona,Arch. Toxicol. 59, 421–425 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. J. MauËl, A. Ransijn, and Y. Buchmuller-Rouiller,J. Leukocyte Biol. 45, 401–409 (1989).

    PubMed  Google Scholar 

  9. J. I. Kurland, and R. Bockman,J. Exp. Med. 147, 952–957 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. R. Oropez-Rendon, V. Speth, G. Hiller, K. Weber, and H. Fischer,Exp. Cell. Res. 119, 365–371 (1979).

    Article  Google Scholar 

  11. D. L. Hutchinson and R. L. Myers,Cell Immunol. 110, 68–76 (1987).

    Article  Google Scholar 

  12. J. J. Lee and A. H. Battles,Environ. Res. 67, 209–219 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. S. O. Knowles and W. E. Donaldson,Comp. Biochem. Physiol. 95C, 99–104 (1990).

    Article  CAS  Google Scholar 

  14. K. Erickson, N. Hubbard, and R. Chakrabarti,J. Nutr. 125, 1683S-1686S (1995).

    PubMed  CAS  Google Scholar 

  15. R. R. Brenner,Prog. Lipid Res. 20, 41–8 (1982).

    Article  Google Scholar 

  16. S. O. Knowles, W. E. Donaldson, and J. E. Andrews,Biol Trace Element Res., in press (1997).

  17. W. E. Donaldson,Biol. Trace Element Res. 7, 255–262 (1985).

    Article  CAS  Google Scholar 

  18. National Research Council,Nutrient Requirements of Poultry. National Academy Science, Washington, DC (1984).

    Google Scholar 

  19. Chemical & Environmental Technology, Inc., Environmental Laboratory and Consulting Services, RTP, NC 27709.

  20. B. Glick, K. Sato, and F. Cohenour,J. Reticuloendothelial Soc. 1, 442–449 (1964).

    Google Scholar 

  21. M. A. Qureshi, R. R. Dietert, and L. D. Bacon,Proc. Soc. Exp. Biol. Med. 181, 560–568 (1986).

    PubMed  CAS  Google Scholar 

  22. K. A. Trembicki, M. A. Qureshi, and R. R. Dietert,Dev. Comp. Immunol. 8, 395–402 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. H. J. Philips, inTissue Culture Methods and Application, P. F. Kruse, Jr. and M. K. Patterson, Jr., eds., Academic, New York, pp. 406–408 (1977).

    Google Scholar 

  24. V. Kaever, H. J. Pfannkuche, K. Wessel, and K. Resch,Biochem. Pharmacol. 39, 1313–1319 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. H. F. Krug and H. Culig,Mol. Pharmacol. 39, 511–516 (1991).

    PubMed  CAS  Google Scholar 

  26. V. L. Marcheselli and N. G. Bazan,J. Nutr. Biochem. 1, 382–388 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. SAS Institute,SAS User’s Guide: Statistics. SAS Institute, Cary, NC (1987).

    Google Scholar 

  28. W. E. Donaldson and T. K. Leeming,Toxicol. Appl. Pharmacol. 73, 119–123 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. D. A. Lawrence and M. J. McCabe, inMetal Toxicology, R. A. Goyer, C. D. Klaassen, and M. A. Waalkes, eds., Academic, San Diego pp. 305–337 (1995).

    Google Scholar 

  30. K. C. Klasing,Poultry Sci. 70, 1176–1186 (1991).

    CAS  Google Scholar 

  31. D. P. Speert, inThe Macrophage, D. C. Lewis and D. H. McGee, eds., Oxford University Press, New York, pp. 215–264 (1992).

    Google Scholar 

  32. H. L. Yin and T. P. Stossel, inPhagocytosis, M. Karnovsky and L. Bolis, eds., Academic, New York pp. 13–27 (1982).

    Google Scholar 

  33. P. C. Calder, J. A. Bond, and D. J. Harvey,Biochem. J. 269, 807–814 (1990).

    PubMed  CAS  Google Scholar 

  34. A. L. Tappel,Arch. Biochem. Biophys. 50, 473–485 (1954).

    Article  PubMed  CAS  Google Scholar 

  35. J. F. Mead, inFree Radicals in Biology, vol.1, W. A. Pryor, ed., Academic, New York, pp. 51–68 (1976).

    Google Scholar 

  36. M. Chvapil, J. N. Ryan, and Z. Brada,Biochem. Pharmacol. 21, 1097–1105 (1972).

    Article  PubMed  CAS  Google Scholar 

  37. O. A. Levander, V. C. Morris, and R. J. Ferretti,J. Nutr. 107, 2135–2143 (1977).

    PubMed  CAS  Google Scholar 

  38. S. J. Stohs and D. Bagchi,Free Radical Biol. Med. 18, 321–336 (1995).

    Article  CAS  Google Scholar 

  39. A. A. Aderem, S. D. Wright, S. C. Silverstein, and Z. A. Cohn,J. Exp. Med. 161, 617–622 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. M. B. Johnston, J. B. Hay, and H. Z. Movat,Am. J. Pathol. 95, 225–238 (1979).

    PubMed  CAS  Google Scholar 

  41. M. A. Qureshi and L. Miller,Poultry Sci. 70, 530–538 (1991).

    CAS  Google Scholar 

  42. M. M. Mathias and J. Dupont,Lipids 20, 791–801 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. J. E. Kinsella, K. S. Broughton, and J. Whelan,J. Nutr. Biochem. 1, 123–141 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. A. KÄfer, H. Zöltzer, and H. F. Krug,Toxicol. Appl. Pharmacol. 116, 125–132 (1992).

    Article  PubMed  Google Scholar 

  45. J. S. Goodwin and J. L. Geuppens,J. Clin. Immunol. 3, 295–304 (1983).

    Article  PubMed  CAS  Google Scholar 

  46. S. L. Kunkel,Lab. Invest. 58, 119–121 (1988).

    PubMed  CAS  Google Scholar 

  47. D. Lappin and K Whaley, inBlood Cell Biochemistry, V5: Macrophages and Related Cells, M. Horton, ed., Plenum, New York, pp. 115–148 (1993).

    Google Scholar 

  48. D. Lappin and K. Whaley,Clin. Exp. Immunol. 49, 623–630 (1982).

    PubMed  CAS  Google Scholar 

  49. T. A. Hamilton, Y. Ohmori, S. Narumi, and C. S. Tannenbaum, inMononudear Monocytes in Cell Biology, G. Lopez-Beresteinand J. Klostergaard, eds., CRC, Boca Raton, FL, pp. 47–70 (1993).

    Google Scholar 

  50. W. Smith, T. Watanabe, K. Umegaki, and W. Sonnenburg, inEicosanoids in the Cardiovascular and Renal Systems, P. V. Halushka and D. E. Mais, eds., MTP, Boston, MA, pp. 232–248 (1988).

    Google Scholar 

  51. P. V. Halushka, D. E. Mais, P. Mayeux, and T. Morinell,Annu. Rev. Pharm. Toxicol. 10, 213–239 (1989).

    Article  Google Scholar 

  52. K. A. Grasman and P. F. Scanlon,Arch. Environ. Contam. Toxicol. 28, 161–167 (1995).

    Article  PubMed  CAS  Google Scholar 

  53. C. H. Hill,Poultry Sci. 68, 297–305 (1989).

    CAS  Google Scholar 

  54. R. G. D. Steel and J. H. Torrie,Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed., McGraw-Hill, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, S.O., Donaldson, W.E. Lead disrupts eicosanoid metabolism, macrophage function, and disease resistance in birds. Biol Trace Elem Res 60, 13–26 (1997). https://doi.org/10.1007/BF02783306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783306

Index Entries

Navigation