Skip to main content
Log in

The role of astrocytes in hepatic encephalopathy

  • Published:
Neurochemical Pathology

Abstract

The Alzheimer type II astrocyte change is the distinctive morphologic alteration in brain of humans and experimental animals succumbing to hepatic encephalopathy (HE). Whether this change is a primary event in the pathogenesis of HE or whether it is secondary to injury of some other component(s) of the CNS has not been clarified. Studies in a rat model of HE have revealed early reactive changes in astrocytes characterized by cytoplasmic hypertrophy. During the later phases, degenerative changes ensue corresponding to the Alzheimer type II change observed by light microscopy. In view of the role of astrocytes in ammonia detoxification and the importance of ammonia in the pathogenesis of HE, we have suggested that the initial astrocytic changes are the morphological correlates of ammonia detoxification. We have speculated that the later degenerative alterations could lead to failure by astrocytes to carry out key functions (e.g., neurotransmitter uptake, ion regulation, and the like) and contribute to the development of the encephalopathy. Recently, the potential involvement of astrocytes in HE has been further investigated, using primary astrocyte cultures. Exposure of cultures to ammonia at clinically relevant concentrations has shown morphologic changes closely resembling those observed in experimental HE in vivo. These deleterious effects can partly be prevented by raising cyclic AMP levels in cells. Other potential toxins (octanoic acid, phenol) have shown pathologic changes as well. Although some alterations were common to all three, they each possessed distinctive pathological effects. A synergistic interaction has also been demonstrated with these toxins. Functional studies of ammonia-treated astrocytes have shown the following: With low doses or short-term exposure, the uptakes of K+, glutamate, and GABA remained unchanged or slightly increased, whereas with higher doses or longer treatment, those activities diminished. A fall in ATP values occurred with prolonged ammonia treatment. Preliminary findings have shown no significant derangements in the beta-adrenergic receptor, except for a slight decrease in receptor affinity. However, cyclic AMP production was diminished following stimulation with isoproterenol. A slight rise in the number of benzodiazepine receptors was found. These studies indicate that profound changes occur in astrocytes following exposure to ammonia and other putative toxins. It is proposed that toxins and factors involved in the precipitation of HE do so by affecting astroglial properties. Derangements in such properties may lead to glial dysfunction (primary gliopathy), resulting in an encephalopathic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R. D. and Foley J. M. (1953) The neurological disorder associated with liver disease.Assoc. Res. Nerv. Ment. Dis. Proc. 32, 198–237.

    CAS  Google Scholar 

  • Albrecht J., Wysmyk-Cybula U., and Rafalowska U. (1985) Na+/K+-ATPase activity and GABA uptake in astroglial cell-enriched fractions and synaptosomes derived from rats in the early stage of experimental hepatogenic encephalopathy.Acta Neurol. Scand. 72, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Baraldi M. and Zeneroli M. L. (1982) Experimental hepatic encephalopathy: Changes in the binding of γ-aminobutyric acid.Science 216, 427–428.

    Article  PubMed  CAS  Google Scholar 

  • Beck D. W., Vinters H. V., Hart M. N. and Cancilla P. A. (1984) Glial cells influence popularity of the blood-brain barrier.J. Neuropathol. Exp. Neurol. 43, 219–224.

    PubMed  CAS  Google Scholar 

  • Bender, A. S. and Hertz L. (1985) Pharmacological evidence that the non-neuronal diazepam binding site in primary cultures of glial cells is associated with a calcium channel.Eur. J. Pharmacol. 110, 287–288.

    Article  PubMed  CAS  Google Scholar 

  • Berl S. and Clarke D. D. (1969) Compartmentation of amino acid metabolism, inHandbook of Neurochemistry (Lajtha A., ed.) vol. 2, pp. 447–472, Plenum, New York, NY.

    Google Scholar 

  • Bernardini P. and Fischer J. E. (1982) Amino acid imbalance and hepatic encephalopathy.Annu. Rev. Nutr. 2, 419–454.

    Article  PubMed  CAS  Google Scholar 

  • Bessman S. P. and Bessman A. N. (1955) The cerebral and peripheral uptake of ammonia in liver disease with a hypothesis for the mechanism of hepatic coma.J. Clin. Invest. 34, 622–628.

    PubMed  CAS  Google Scholar 

  • Brun A., Dawiskiba Z., Hindfelt B., and Olsson J. E. (1977) Brain protein in hepatic encephalopathy.Acta Neurol. Scand. 55, 213–225.

    PubMed  CAS  Google Scholar 

  • Cheng S. C. (1972) Compartmentation of tricarboxylic acid cycle intermediates and related metabolites, inMetabolic Compartmentation in the Brain (Balazs R. and Cremer J. E., eds.) pp. 107–118, John Wiley, New York, NY.

    Google Scholar 

  • Conn H. O. and Lieberthal M. L. (1979)The Hepatic Coma Syndromes and Lactulose, Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • DeBault L. E. (1982) γ-Glutamyltranspeptidase induction mediated by glial foot process into endothelium contact in co-culture.Brain Res. 220, 432–435.

    Article  Google Scholar 

  • Diemer N. H. (1978) Glial and neuronal changes in experimental hepatic encephalopathy. A quantitative morphological investigation.Acta Neurol. Scand. Suppl. 58, 1–144.

    Article  Google Scholar 

  • Duffy T. E. and Plum F. (1982) Hepatic encephalopathy, inThe Liver Biology and Pathobiology (Arias I., Popper H., Schachter D., and Shafritz D. A., eds.) pp. 693–715. Raven, New York, NY.

    Google Scholar 

  • Ebersolt C., Perez M., and Bockaert J. (1981) α1 and α2 adrenergic receptors in mouse brain astrocytes from primary cultures.J. Neurosci. Res. 6, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Fischer J. E. and Baldessarini R. J. (1971) False neurotransmitter and hepatic failure.Lancet 2, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Gregorios J. B., Mozes L. W., Norenberg L. O. B., and Norenberg M. D. (1985a) Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies.J. Neuropathol. Exp. Neurol. 44, 397–403.

    PubMed  CAS  Google Scholar 

  • Gregorios J. B., Mozes L. W., and Norenberg M. D. (1985b) Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies.J. Neuropathol. Exp. Neurol. 44, 404–414.

    PubMed  CAS  Google Scholar 

  • Gregorios J. B., Mozes L. W., Norenberg L. O. B., and Norenberg M. D. (1986) Effect of cyclic AMP on ammonia-induced alterations in primary astrocyte cultures.J. Neuropathol. Exp. Neurol. 45, 396–407.

    PubMed  CAS  Google Scholar 

  • Hawkins R. A., Miller A. L., Nielsen R. C., and Veech R. L. (1973) The acute action of ammonia on rat brain metabolism in vivo.Biochem. J. 134, 1001–1008.

    PubMed  CAS  Google Scholar 

  • Hertz L. (1982) Astrocytes, inHandbook of Neurochemistry, 2nd ed (Lajtha A., ed.) vol. 1, pp. 319–355, Plenum, New York, NY.

    Google Scholar 

  • Hertz L. and Mukerji S. (1980) Diazepam receptors in primary cultures: Displacement of benzodiazepines or barbiturates.Can. J. Physiol. Pharmacol. 58, 217–220.

    PubMed  CAS  Google Scholar 

  • Hertz L. and Sastry B. R. (1978) Inhibition of γ-aminobutyric acid uptake into astrocytes by pentobarbital.Can. J. Phys. Pharm. 56, 1083–1087.

    CAS  Google Scholar 

  • Hertz L., Bender A. S., and Richardson J. S. (1983) Benzodiazepines and beta-adrenergic binding to primary cultures of astrocytes and neurons.Prog. Neuropsychopharmacol. Biol. Psychiat. 7, 681–686.

    Article  CAS  Google Scholar 

  • Hindfelt B. and Plum F. (1975)l-methionineDL-sulfoximine and acute ammonia toxicity.J. Pharm. Pharmacol. 27, 456–458.

    PubMed  CAS  Google Scholar 

  • Hindfelt B. and Siesjö B. K. (1971) Cerebral effects of acute ammonia intoxication. II. The effect upon energy metabolism.Scand. J. Clin. Lab. Invest. 28, 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Hindfelt B., Holmin T., and Olsson J-E. (1979) Brain proteins in experimental portal-systemic shunting.Acta Neurol. Scand. 59, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Hindfelt B., Plum F., and Duffy T. E. (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats.J. Clin. Invest. 59, 386–396.

    PubMed  CAS  Google Scholar 

  • Hösli L., Hösli E., Zehntner C., Lehmann R. and Lutz T. W. (1982) Evidence for the existence of α- and β-adrenoreceptors on cultured glial cells—an electrophysiological study.Neuroscience 7, 2867–2877.

    Article  PubMed  Google Scholar 

  • James J. H., Ziparo V., Jeppsson B., and Fischer J. E. (1979) Hyperammonaemia, plasma amino acid imbalance, and blood-brain amino acid transport: A unified theory of portal-systemic encephalopathy.Lancet 2, 772–775.

    Article  PubMed  CAS  Google Scholar 

  • Jessy J. and Murthy C. R. K. (1985) Elevation of transamination of branched-chain amino acids in brain in acute ammonia toxicity.Neurochem. Int. 7, 1027.

    Article  CAS  PubMed  Google Scholar 

  • Jones E. A., Schafer D. F., Ferenci P., and Pappas S. C. (1984) The neurobiology of hepatic encephalopathy.Hepatology 4, 1235–1242.

    PubMed  CAS  Google Scholar 

  • Kimelberg H. K. (1983) Primary astrocyte cultures—a key to astrocyte function.Cell. Molec. Neurobiol. 3, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Liskowsky D. R., Norenberg L. O. B., and Norenberg M. D. (1986) Effect of ammonia on cyclic AMP production in primary astrocyte cultures.Brain Res.,386, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W. (1982) GABA in plasma, CSF and brain of dogs during acute and chronic treatment with γ-acetylenic GABA and valproic acid, inProblems in GABA Research from Brain to Bacteria (Okada Y., and Roberts E., eds.) pp. 102–109. Excerpta Medica, Princeton, NJ.

    Google Scholar 

  • Matakas F., Birkle J., and Cervós-Navarro J. (1978) The effect of prolonged experimental hypercapnia on the brain.Acta Neuropathol. 41, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • McCandless D. W. and Schenker S. (1981) Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system.Exp. Brain Res. 44, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy K. D. (1983) An autoradiographic analysis of beta adrenergic receptors on immunocytochemically defined astroglia.J. Pharmacol. Exp. Ther. 226, 282–290.

    PubMed  CAS  Google Scholar 

  • McGiven J. D., Bradford N. M., Crompton M., and Chappell J. B. (1973) Effect ofl-leucine on the nitrogen metabolism of isolated rat liver mitochondria.Biochem. J. 134, 209–215.

    Google Scholar 

  • Minneman K. P., Quik M., and Emson P. C. (1978) Receptor-linked cyclic AMP systems in rat striatum: Differential localization revealed by kainic acid injection.Brain Res. 151, 507–521.

    Article  PubMed  CAS  Google Scholar 

  • Mossakowski M. J., Borowicz J. W., Kraśnicka Z., and Gajkowska J. (1971) Ultrastructure of Opalski cells cultured in vitro. Preliminary report.Acta Neuropathol. 19, 301–306.

    Article  Google Scholar 

  • Mossakowski M. J., Renkawek K., Kraśnicka Z., Smialek M., and Pronaszko A. (1970) Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture.Acta Neuropathol. 16, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Nahorski S. R., Howlett D. R., and Redgrave P. (1979) Loss of β-adrenoreceptor binding sites in rat striatum following kainic acid lesions.Eur. J. Pharmacol. 60, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Nestler E. and Greengard P. (1984) Protein phosphorylation in the nervous system.John Wiley, New York, NY.

    Google Scholar 

  • Norenberg M. D. (1976) Histochemical studies in experimental portal-systemic encephalopathy. I. Glutamic dehydrogenase.Arch. Neurol. 33, 265–269.

    PubMed  CAS  Google Scholar 

  • Norenberg M. D. (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy.Lab. Invest. 36, 618–627.

    PubMed  CAS  Google Scholar 

  • Norenberg M. D. (1981) The astrocyte in liver disease, inAdvances in Cellular Neurobiology (Fedoroff S. and Hertz L., eds.), vol. 2, pp. 303–352. Academic, New York, NY.

    Google Scholar 

  • Norenberg M. D. (1983) Immunohistochemistry of glutamine synthetase, inGlutamine, Glutamate and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.), pp. 95–111, Alan R. Liss, New York, NY.

    Google Scholar 

  • Norenberg M. D. and Lapham L. W. (1974) The astrocyte response in experimental portal-systemic encephalopathy: An electron microscope study.J. Neuropathol. Exp. Neurol. 33, 422–435.

    PubMed  CAS  Google Scholar 

  • Norenberg L. O. B. and Norenberg M. D. (1986) Synergism of hepatic coma toxins in primary astrocyte cultures.Proc. Int. Cong. Neuropathol. 10, 48.

    Google Scholar 

  • Norenberg M. D., Norenberg L. O. B., Gutierrez M. P., and Neary J. T. (1986) Altered protein phosphorylation in astrocytes: A possible mechanism in ammonia encephalopathy.Soc. Neurosci. Abst. 12, 270.

    Google Scholar 

  • Norenberg L. O. B. and Norenberg M. D. (1986) Effect of amino acids on ammonia toxicity in primary astrocyte cultures.Soc. Neurosci Abst. 12, 269.

    Google Scholar 

  • Norenberg M. D., Mozes L. W., Papendick R. E., and Norenberg L. O. B. (1985) Effect of ammonia on glutamate, GABA and rubidum uptake by astrocytes.Ann. Neurol. 18, 149.

    Google Scholar 

  • Norenberg M. D., Norenberg L. O. B., and Gregorios J. B. (1986) The effect of octanoic acid on astrocytes in primary cultures.J. Neuropathol. Exp. Neurol. 45, 365.

    Google Scholar 

  • Norenberg M. D., Norenberg L. O. B., and Gregorias J. B. (1986) The effect of phenol on astrocytes in primary cultures.Proc. Int. Cong. Neuropathol. 10, 48.

    Google Scholar 

  • Posner J. B. and Plum F. (1960) The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy.J. Clin. Invest. 39, 1246–1258.

    PubMed  CAS  Google Scholar 

  • Raabe W. and Lin S. (1984) Ammonia, postsynaptic inhibition and CNS energy state.Brain Res. 303, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Schenker S., Roberts R. K., Desmond P. V., and Hoyumpa A. M., Jr. (1979) Management of portal systemic encephalopathy, inProblems in Liver Disease (Davidson C. S., ed.) pp. 150–161. Stratton, New York, NY.

    Google Scholar 

  • Scherer H.-J. (1933) Zur Frage der Beziehungen zwischen Leber—und Gehirnveranderungen.Virchows Arch. Pathol. Anat. Physiol. 288, 333–345.

    Article  Google Scholar 

  • Sherlock S. (1981) Diseases of the Liver and Biliary System, 6th Ed., Blackwell, Oxford, UK.

    Google Scholar 

  • Siesjö B. K. (1978)Brain Energy Metabolism, p. 260. Wiley, New York, NY.

    Google Scholar 

  • Sobel R. A., DeArmond S. J., Forno L. S., and Eng L. F. (1981) Glial fibrillary acidic protein in hepatic encephalopathy. An immunohistochemical study.J. Neuropathol. Exp. Neurol. 40, 625–632.

    PubMed  CAS  Google Scholar 

  • Soeters P. B. and Fischer J. E. (1976) Insulin, glucagon, amino acid imbalance, and hepatic encephalopathy.Lancet 2, 880–882.

    Article  PubMed  CAS  Google Scholar 

  • Subbalakshmi G. Y. C. V. and Murthy C. R. K. (1983) Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.Neurochem. Int. 5, 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Synapin P. S. and Skolnick P. (1979) Characterization of benzodiazepine binding sites in cultured cells of neural origin.J. Neurochem. 32, 1047–1051.

    Article  Google Scholar 

  • Tao-Cheng J-H., Nagy Z., and Brightman M. (1986) Cerebral endothelial tight junctions are modified in vitro by primary glial cultures.Int. J. Dev. Neurosci. 4, Suppl 1, S75.

    Google Scholar 

  • Tardy M., Costa M. F., Rolland B., Fages C., and Gonnard P. (1981) Benzodiazepine receptors on primary cultures of mouse astrocytes.J. Neurochem. 36, 1587–1589.

    Article  PubMed  CAS  Google Scholar 

  • Tarver D., Walt R. P., Dunts A. A., Jenkins W. J., and Sherlock S. (1983) Precipitation of hepatic encephalopathy by propranolol in cirrhosis.Br. Med. J. 287, 585.

    CAS  Google Scholar 

  • Van Calker D. and Hamprecht B. (1980) Effects of neurohormones on glial cells, inAdvances in Cellular Neurobiology (Fedoroff S. and Hertz L., eds.), vol. 1, pp. 33–67, Academic, New York, NY.

    Google Scholar 

  • von Hösslin C. and Alzheimer A. (1912) Ein Beitrag zur Klinik und pathologischen Anatomie der Westphal-Strumpellschen Pseudosklerose.Z. Neurol. Psychiatr. 8, 183–209.

    Google Scholar 

  • Voorhies T. M., Ehrlich M. E., Duffy T. E., Petito C. K., and Plum F. (1983) Acute hyperammonemia in the young primate. Physiologic and neuropathological correlates.Pediatric Res. 17, 970–975.

    Article  CAS  Google Scholar 

  • Waggonner, R. W. and Malamud N. (1942) Wilson's disease in the light of cerebral changes following ordinary acquired liver disorders.J. Nerv. Ment. Dis. 96, 410–423.

    Article  Google Scholar 

  • Warren K. S. and Schenker S. (1964) Effect of an inhibition of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism.J. Lab. Clin. Med. 64, 442–449.

    PubMed  CAS  Google Scholar 

  • Wasterlain C. G., Lockwood A., and Conn M. (1978) Chronic inhibition of brain protein synthesis after portacaval shunting.Neurology 28, 233–239.

    PubMed  CAS  Google Scholar 

  • Watanabe A., Shiota T., Takei N., and Nagashima H. (1985) Excitatory and inhibitory amino acid neurotransmitters and ammonia metabolism in hepatic failure rats.Res. Exp. Med. (Berl)185, 399–404.

    Article  CAS  Google Scholar 

  • Weyne J., Van Leuven F., Demeester G., and Leusen I. (1977) Metabolism of glutamic acid and related amino acids in the brain studied with14C-labeled glucose, butyric acid and glutamic acid in hypercapnic rats.J. Neurochem. 29, 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Weyne J., Van Leuven F., Kazemi H., and Leusen I. (1978) Selected brain amino acids and ammonium during chronic hypercapnia in conscious rats.J. Appl. Physiol. 44, 333–339.

    PubMed  CAS  Google Scholar 

  • Wiesner R. H. (1986) Does propranolol precipitate hepatic encephalopathy?J. Clin. Gastroenterol. 8, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D. M. and Karler R. (1960) The role of carbon dioxide in the nervous system.Anesthesiology 21, 686–703.

    PubMed  CAS  Google Scholar 

  • Yudkoff M., Nissim I., Kim S., Pleasure D., Hummeler K., and Segal S. (1983) [15N] Leucine as a source of [15N] glutamate in organotypic cerebellar explants.Biochem. Biophys. Res. Commun. 115, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M., Nissim I., Kim S. U., Pleasure D., and Segal S. (1984) Metabolism of15NH3 in organotypic cerebellar explants and cultured astrocytes: Studies with gas chromatography—mass spectrometry.J. Neurochem. 42, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Zieve L. (1981) The mechanism of hepatic coma.Hepatology 1, 360–365.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norenberg, M.D. The role of astrocytes in hepatic encephalopathy. Neurochemical Pathology 6, 13–33 (1987). https://doi.org/10.1007/BF02833599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833599

Index Entries

Navigation