Skip to main content
Log in

Neuronal plasticity and Parkinson disease

  • Articles and Abstracts from a Meeting on Neurodegenerative Disorders Common Molecular Mechanisms Held in Ocho Rios, Jamaica, April 10–15, 1994
  • Published:
Molecular and Chemical Neuropathology

Conclusion

The data reviewed here demonstrate a capacity for neuronal plasticity in the aged human brain, even when affected by neurodegenerative disorders. However, given their location and environment, these morphological changes may have beneficial or deleterious consequences. In Parkinson disease, the changes observed in the substantia nigra are likely involved in compensatory mechanisms that may delay the appearance of the clinical symptoms, where as the synaptic plasticity in the striatum may aggravate the behavioral disturbances. Finally, it is likely that such synaptic plasticity requires a highly differentiated set of trophic molecules during the evolution of the pathological process. Further knowledge of these molecules is needed, however, before their use can be envisaged as possible therapeutic agents aimed at correcting the behavioral deficits owing to the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anglade P., Tsuji S., Hirsch E. C., Javoy-Agid F., and Agid Y. (1993) Ultrastructural relations between nigrostriatal dopaminergic neurons and cholinergic nerve endings in the human brain.Histol. Histopathol. 8, 501–504.

    PubMed  CAS  Google Scholar 

  • Anglade P., Tsuji P., Agid Y., and Hirsch H. C. (1995a) Plasticity of nerve afferents to nigrostriatal neurons in Parkinson’s disease.Ann. Neurol. 37, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Anglade P., Mouatt-Prigent A., Agid Y., and Hirsch E. C. (1995b) Synaptic plasticity in the striatum of patients with Parkinson’s disease. Submitted.

  • Blaha C. D. and Winn P. (1993) Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats.J. Neurosci. 13, 1035–1044.

    PubMed  CAS  Google Scholar 

  • Bolam J. P. and Smith Y. (1990) The GABA and substance P input to dopaminergic neurons in the substantia nigra of the rat.Brain Res. 529, 57–78.

    Article  PubMed  CAS  Google Scholar 

  • Bolam J. P., Francis C. M., and Henderson Z. (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study.Neuroscience 41, 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Calverley R. K. S. and Jones D. G. (1990) Contributions of dendritic spines and perforated synapses to synaptic plasticity.Brain Res. Rev. 15, 215–249.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W. and Anderson K. J. (1988) Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer’s disease.Adv. Neurol. 47, 313–336.

    PubMed  CAS  Google Scholar 

  • Girault J.-A., Halpain S., and Greengard P. (1990) Excitatory aminoacid antagonist and Parkinson’s disease.Trends Neurosci. 13, 225–227.

    Article  Google Scholar 

  • Grofova I., Deniau J. M., and Kitai S. T. (1982) Morphology of the substantia nigra pars reticulata projection neurons intracellularly labeled with HRP.J. Comp. Neurol. 208, 352–368.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S., Gongora-Alfaro J. L., Martinez-Fong D., and Aceves J. (1992) A cholinergic input to the substantia nigra pars compacta increases striatal dopamine metabolism measured by in vivo voltametry.Brain Res. 598, 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O. (1993) Parkinson’s disease and the adaptative capacity of the nigrostriatal dopamine system: possible neurochemical mechanism.Adv. Neurol. 60, 140–147.

    PubMed  CAS  Google Scholar 

  • Ingham C. A., Hood S. H., van Maldegem B., Weenick A., and Arbuthnott G. W. (1993) Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway.Exp. Brain Res. 93, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Javoy F., Agid Y., Bouvet D., and Glowinski J. (1974) Changes in neostriatal DA metabolism after carbachol or atropine microinjections in the substantia nigra.Brain Res. 68, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Kerns J. M., Sierens D. K., Kao L. C., Klawans H. L., and Carvey P. M. (1992) Synaptic plasticity in the rat striatum following chronic haloperidol treatment.Clin. Neuropharmacol. 15, 488–500.

    Article  PubMed  CAS  Google Scholar 

  • Leenders K. L., Salmon E. P., Tyrell P., Perani D., Brooks D. J., Sager H., Jones T., Marsden C. D., and Frackowiak R. S. J. (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease.Arch. Neurol. 47, 1290, 1291.

    PubMed  CAS  Google Scholar 

  • Meshul C. K., Stallbaumer R. K., Taylor B., and Janowsky A. (1994) Haloperidolinduced morophological changes in the striatum are associated with glutamate synapses.Brain Res. 648, 181–195.

    Article  PubMed  CAS  Google Scholar 

  • Reid M. S., Herrera-Marschitz M., Hökfelt T., Ohlin M., and Ungerstedt U. (1988) Differential modulation of striatal dopamine release by intranigral injection of gamma-aminobutyric acid (GABA), dynorphin A and substance P.Eur. J. Pharmacol. 147, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Reid M. S., Herrera-Marschitz M., and Ungerstedt U. (1990) Effects of intranigral substance P and neurokinin A on striatal dopamine release-II. Interactions with bicuculline and naloxone.Neuroscience 36, 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Rinne U. K., Laihinen A., Rinne J. O., Nagren K., Bergman J., and Ruotsalainen U. (1990) Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum with early Parkinson’s disease.Movt. Disord. 5, 55–59.

    Article  CAS  Google Scholar 

  • Smith A. D. and Bolam J. P. (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones.Trends Neurosci. 13, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Vijayan V. J. and Cotman C. M. (1987) Hydrocortisone administration alters glial reacation to entorhinal lesion in the rat dentate gyrus.Exp. Neurol. 96, 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Walters J. R., Bergstrom D. A., Carlson J. H., Chase T. N., and Braun A. R. (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects.Science 236, 719–722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anglade, P., Tsuji, S., Agid, Y. et al. Neuronal plasticity and Parkinson disease. Molecular and Chemical Neuropathology 24, 251–255 (1995). https://doi.org/10.1007/BF02962152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02962152

Index Entries

Navigation