Skip to main content
Log in

P-glycoprotein, glutathione and glutathione S-transferase increase in a colon carcinoma

Aumento de glicoproteína-P, glutation y glutation S-transferasa en una línea celular de carcinoma de colon por colchicina

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The acquisition of resistance to anticancer agents used in chemotherapy is the main cause of treatment failure in malignant disorders, provoking tumours to become resistant during treatment, although they initially respond to it. The main multidrug resistance (MDR) mechanism in tumour cells is the expression of P-glycoprotein (P-gly), that acts as an ATP-dependent active efflux pump of chemotherapeutic agents. Furthermore, an increased detoxification of compounds mediated by high levels of glutathione (GSH) and glutathione S-transferase (GST), has been found in resistant cells. We developed a study aiming to evaluate the evolution of the main drug resistance markers in tumour cells: P-gly, GSH and GST, during the acquisition of resistance to colchicine, for the purpose of studying the adaptation process and its contribution to the MDR phenomenon. A human colon adenocarcinoma cell line was exposed to colchicine during 82 days, being P-gly, GSH levels and GST activity evaluated by flow cytometry, spectrofluorimetry and spectrophotometry, during exposure time. P-gly and GSH levels increased gradually during the exposure to colchicine, reaching 2.35 and 3.21 fold each. On day 82, GST activity increased 1.84 fold at the end of the exposure period. Moreover, an increment in drug cross-resistance was obtained that ranges from 2.62 to 5.22 fold for colchicine, vinblastine, vincristine and mitomycin C. The increments obtained in P-gly, GSH and GST could probably contribute to the MDR phenomenon in this human colon adenocarcinoma cell line.

Resumen

La adquisición de resistencia a los agentes anticancerígenos usados en quimioterapia es la principal causa de fallo en el tratamiento del cáncer. El principal mecanismo de resistencia a múltiples drogas (MDR) en células tumorales es la expresión de la glicoproteína-P (P-gly), que actúa como una bomba extrusora de agentes quimioterápicos. Además, se ha observado en células resistentes un incremento en la detoxificación de compuestos mediada por altos niveles de glutation (GSH) y glutation S-transferasa (GST). El objetivo de este trabajo es el estudio de la evolución de los principales marcadores de resistencia a drogas en células tumorales, P-gly, GSH y GST, durante la adquisición de resistencia a colchicina, con el propósito de estudiar el proceso de adaptación y su contribución al fenómeno MDR. Tras exponer una línea celular de adenocarcinoma de colon humano a colchicina durante 82 días, se evalúan durante el tiempo de exposición los niveles de P-gly, GSH y GST por citometría de flujo, espectrofluorimetría y espectrofotometría. Los niveles de P-gly y GSH se incrementan gradualmente durante la exposición hasta 2,35 y 3,21 veces. La actividad GST se incrementa al final del período de exposición (día 82), alcanzando un valor 1,84 veces superior. Además, se obtiene un incremento en la resistencia cruzada a drogas entre 2,62–5,22 veces para colchicina, vinblastina, vincristina y mitomicina C. Los aumentos observados de P-gly, GSH y GST podrían contribuir al fenómeno MDR en esta línea celular de adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. E. (1985):Meth. Enzymol.,113, 548–555.

    Article  CAS  PubMed  Google Scholar 

  2. Benderra, Z., Morjani, H., Trussardi, A. and Manfait, M. (1999):Adv. Exp. Med. Biol.,457, 151–160.

    CAS  PubMed  Google Scholar 

  3. Boiocchi, M. and Toffoli, G. (1992):Eur. J. Cancer.,28, 1099–1105.

    Article  Google Scholar 

  4. Bradford, M. M. (1976):Analyt. Biochem.,72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  5. Brian, L. J., Dalton, W., Fisher, G. A. and Sikic, B. I. (1993):Cancer,72, 3484–3488.

    Article  Google Scholar 

  6. Chu, X. Y., Suzuki, H., Ueda, K., Kato, Y., Akiyama, S. and Sugiyama, Y. (1999):J. Pharmacol. Exp. Ther.,288, 735–741.

    CAS  PubMed  Google Scholar 

  7. Kartner, N., Evernden-Porelle, D., Bradley, G. and Ling, V. (1985):Nature,316, 820–823.

    Article  CAS  PubMed  Google Scholar 

  8. Kartner, N., Shales, M., Riordan, J. R. and Ling, V. (1983):Cancer Res.,43, 4413–4419.

    CAS  PubMed  Google Scholar 

  9. Kirschner, L. S., Greenberger, L. M., Hong-Hsu, S. I., Huang Yang, C. P., Cohen, D., Piekarz, R. L., Castillo, G., Han E.-H., Yu, L. and Horwitz, S. B. (1992):Biochem. Pharmacol.,43, 77–87.

    Article  CAS  PubMed  Google Scholar 

  10. Lambert, P. A., Kang, Y., Greaves, B. and Perry, R. R. (1998):J. Surg. Res.,80, 177–181.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis, A. D., Duran, G. E., Land, H.-M. and Sikic, B. I. (1992):Int. J. Radiation Oncology Biol. Phys.,22, 821–824.

    CAS  Google Scholar 

  12. Lum, B. L., Fisher, G. A., Brophy, N. A., Yahanda, A. M., Adler, K. M., Kaubisch, S., Halsey, J. and Sikic, B. I. (1993):Cancer,72, 3502–3514.

    Article  CAS  PubMed  Google Scholar 

  13. Morales, J. A., Ruiz-Gómez, M. J., Gil-Carmona, L., Souviron, A. and Martínez-Morillo, M. (1995):Rev. esp. Fisiol. (J. Physiol. Biochem.),51, 43–48.

    CAS  Google Scholar 

  14. Naito, S., Yokomizo, A. and Koga, H. (1999):Int. J. Urol.,6, 427–439.

    Article  CAS  PubMed  Google Scholar 

  15. Pirker, R., Keilhauer, G., Raschack, M., Lechner, C. and Ludwigh, M. (1990):Int. J. Cancer,45, 916–919.

    Article  CAS  PubMed  Google Scholar 

  16. Reeve, J. G., Wright, K. A., Rabbitts, P. H., Twentyman, P. R. and Koch, G. (1989):J. Natl. Cancer Inst.,81, 1588–1591.

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz Gómez, M. J., Gil, L., Souviron, A. and Martínez-Morillo, M. (2000):J. Physiol. Biochem.,56, 33–38.

    Article  PubMed  Google Scholar 

  18. Salvatore, C., Bigioni, M., Iafrate, E. M., Cianfriglia, M. and Manzini, S. (1999):Anticancer Drugs,10, 663–669.

    Article  CAS  PubMed  Google Scholar 

  19. Slovak, M. L., Coccia, M., Meltzer, P. S. and Trent, J. M. (1991):Anticancer Res.,11, 423–428.

    CAS  PubMed  Google Scholar 

  20. Twentyman, P. R., Reeve, J. G., Koch, G. and Wright, K. A. (1990):Br. J. Cancer.,62, 89–95.

    CAS  PubMed  Google Scholar 

  21. Van Brussel, J. P., Van Steenbrugge, G. J., Romijn, J. C., Schröder, F. H. and Mickisch, G. H. (1999):Eur. J. Cancer.,35, 664–671.

    Article  PubMed  Google Scholar 

  22. Van Dam, P. A., Watson, J. V., Lowe, D. G. and Shepherd, J. H. (1992):Obstet. Gynecol.,79, 616–621.

    PubMed  Google Scholar 

  23. Van der Kolk, D. M., Vellenga, E., Müller, M. and de Vries, E. G. (1999):Adv. Exp. Med. Biol.,457, 187–198.

    PubMed  Google Scholar 

  24. Volm, M., Mattern, J. and Samsel, B. (1992):Cancer,70, 764–769.

    Article  CAS  PubMed  Google Scholar 

  25. Warholm, M., Guthenberg, C., Von Bahr, C. and Mannervik, B. (1985):Meth. Enzymol.,113, 499–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Martínez-Morillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Gómez, M.J., Souviron, A., Martínez-Morillo, M. et al. P-glycoprotein, glutathione and glutathione S-transferase increase in a colon carcinoma. J. Physiol. Biochem. 56, 307–312 (2000). https://doi.org/10.1007/BF03179798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179798

Keyword

Palabras clave

Navigation