Skip to main content
Log in

Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: Interstitial fluid pressure (IFP) in rodent malignant tumors is reportedly much higher than in surrounding normal tissue. We hypothesized the same may be true in human invasive breast tumors.

Methods: We measured IFP in the operating room in 25 patients undergoing excision breast biopsy under local anesthetic for diagnostic purposes.

Results: In patients with invasive ductal carcinomas IFP was 29 ± 3 (SE) mm Hg, compared with −0.3 ± 0.1 mm Hg in those with normal breast parenchyma (p < 0.001), 3.6 ± 0.8 mm Hg in those with benign tumors (p < 0.003), −0.3 ± 0.2 mm Hg in those with noninvasive carcinomas (p = 0.034), and 0.4 ± 0.4 mm Hg in those with other benign breast conditions (p = 0.002). There was a direct correlation between IFP and tumor size (R2 = 0.3977; p = 0.021). No correlation was found between IFP and nuclear grade, angiolymphatic invasion, systemic blood pressure, metastasis to lymph nodes, or estrogen and progesterone receptors.

Conclusions: IFP measurements may facilitate radiographic or ultrasound localization of small or nonpalpable malignant tumors in those patients undergoing needle aspiration cytology or stereotactic core needle biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1._Jain RK. Transport of molecules across tumor vasculature.Cancer Met Rev 1987;6(4):559–93.

    Article  CAS  Google Scholar 

  • 2._Peterson HI. The microcirculation of tumors. In: Orr FW, Buchanan MR, Weiss L, eds.Microcirculation in cancer metastases. Ann Arbor, MI: CRC Press, 1991:277–98.

    Google Scholar 

  • 3._Senger DR, Galli SJ, Dvorak AM, Peruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  • 4._Jain RK. Transport of molecules in the tumor interstitium: a review.Cancer Res 1987;47:3039–51.

    CAS  PubMed  Google Scholar 

  • 5._Weiss L, Haydock K, Pickren JW, Lane WW. Organ vascularity and metastatic frequency.Am J Pathol 1980;101:101–14.

    CAS  PubMed  Google Scholar 

  • 6._Young JS, Lumsden CE, Stalker AL. The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit.J Pathol Bacteriol 1950;62:313–32.

    Article  CAS  PubMed  Google Scholar 

  • 7._Gullino PM, Clark SH, Grantham FH. The interstitial fluid of solid tumors.Cancer Res 1964;24:780–97.

    CAS  PubMed  Google Scholar 

  • 8._Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. Interstitial hypertension in superficial metastatic melanomas in humans.Cancer Res 1991;51:6691–4.

    CAS  PubMed  Google Scholar 

  • 9._Gutmann R, Leunig M, Feyh J, Goelz AE, Messmer K, Kastenbauer E, Jain RK. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size.Cancer Res 1992; 52:1993–5.

    CAS  PubMed  Google Scholar 

  • 10._Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK. Interstitial hypertension in carcinoma of the uterine cervix in patients: possible correlation with tumor oxygenation and radiation response.Cancer Res 1991;51:6695–8.

    CAS  PubMed  Google Scholar 

  • 11._Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy.Cancer Res 1990;50:4478–84.

    CAS  PubMed  Google Scholar 

  • 12._Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK. Interstitial hypertension in human breast and colorectal tumors.Cancer Res 1992;52:6371–4.

    CAS  PubMed  Google Scholar 

  • 13._Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies.J Natl Cancer Inst 1989; 81:570–6.

    Article  CAS  PubMed  Google Scholar 

  • 14._Donegan WL. Evaluation of a palpable breast mass.N Engl J Med 1992;327(13):937–42.

    Article  CAS  PubMed  Google Scholar 

  • 15._Hollander M, Wolfe D. Distribution free rank sum test (Wilcoxon) and distribution free test (Kruskal-Wallis). In: Hollander M, Wolfe D, eds.Nonparametric statisticalmethods. New York: Wiley, 1973:68–74, 115-9.

    Google Scholar 

  • 16._Draper NR, Smith Draper H. Fitting a straight line by least squares. In: Draper NR, Smith Draper H, Richard N, eds.Applied regression analysis, 2nd ed. New York: Wiley, 1981:1–70.

    Google Scholar 

  • 17._Liotta LA, Stetler-Stevenson WG. Principles of molecular cell biology of cancer: cancer metastasis. In: Devita VT, Hellman S, Rosenberg SA, eds.Cancer: principles and practice ofoncology. 3rd ed. Philadelphia: J. B. Lippincott, 1989:98–115.

    Google Scholar 

  • 18._Sugarbaker EV. Patterns of metastasis in human malignancies.Cancer Biol Rev 1981;2:235–78.

    Google Scholar 

  • 19._Ewing T. In:A treatise on tumors. Philadelphia: WB Saunders, 1928.

    Google Scholar 

  • 20._Nathanson SD, Putnam M. Metastasis to regional lymph nodes: the influence of lymphatic flow rates.Clin and Exp Metastasis 1990;8:71–2.

    Google Scholar 

  • 21._Folkman J, Klagsbrun M. Angiogenic factors.Science 1987;235:442–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathanson, S.D., Nelson, L. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Annals of Surgical Oncology 1, 333–338 (1994). https://doi.org/10.1007/BF03187139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187139

Key Words

Navigation