Skip to main content
Log in

Osteoporosis and risk of fracture in patients with diabetes: an update

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) and osteoporotic fractures are two of the most important causes of mortality and morbidity in older subjects. Recent data report a close association between fragility fracture risk and DM of both type 1 (DM1) and type 2 (DM2). However, DM1 is associated with reduced bone mineral density (BMD), whereas patients with DM2 generally have normal or increased BMD. This apparent paradox may be explained by the fact that, at a given level of BMD, diabetic patients present lower bone quality with respect to non-diabetics, as shown by several studies reporting that diabetes may affect bone tissue by means of various mechanisms, including hyperinsulinemia, deposition of advanced glycosylation endproducts (AGEs) in collagen, reduced serum levels of IGF-1, hypercalciuria, renal failure, microangiopathy and inflammation. In addition, the propensity to fall and several comorbidities may further explain the higher fracture incidence in DM patients with respect to the general population. It is reasonable to expect that close metabolic control of diabetes may improve bone status although its effect on reduction of fracture risk has not yet been demonstrated. However, metformin has a direct effect on bone tissue by reducing AGE accumulation, whereas insulin acts directly on osteoclast activity, and thiazolidinediones (TZD) may have a negative effect by switching mesenchymal progenitor cells to adipose rather than bone tissue. New prospects include the incretins, a class of antidiabetic drugs which may play a role linking nutrition and bone metabolism. Better knowledge on how diabetes and its treatments influence bone tissue may lie at basis of effective prevention of bone fracture in diabetic patients. Thus, close glycemic control, adequate intake of calcium and vitamin D, screening for low BMD, and prevention and treatment of diabetic complications are key elements in the management of osteoporosis in both DM1 and DM2. Attention should be paid to treating diabetes with TZD in women with DM2, particularly if elderly. Lastly, patients with osteoporosis and diabetes should be offered the same pharmacological treatments as non-diabetics, although specific trials on the effects of anti-osteoporotic drugs in the diabetic population are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnell O, Kanis JA, Oden A et al. Mortality after osteoporotic fractures. Osteoporos Int 2004; 15: 38–42.

    Article  CAS  PubMed  Google Scholar 

  2. Tosteson AN, Gabriel SE, Grove MR et al. Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos Int 2001; 12: 1042–49.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang HX, Majumdar SR, Dick DA et al. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res 2005; 20: 494–500.

    Article  CAS  PubMed  Google Scholar 

  4. Kroger H, Tuppurainen M, Honkanen R et al. Bone mineral density and risk factors for osteoporosis - a population-based study of 1600 perimenopausal women. Calcif Tissue Int 1994; 55: 1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Johnell O, Gullberg B, Kanis JA et al. Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 1995; 10: 1802–15.

    Article  CAS  PubMed  Google Scholar 

  6. Janghorbani M, Van Dam RM, Willett WC et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007; 166: 495–505.

    Article  PubMed  Google Scholar 

  7. Munoz-Torres M, Jodar E, Escobar-Jimenez F et al. Bone mineral density measured by dual X-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. Calcif Tissue Int 1996; 58: 316–9.

    Article  CAS  PubMed  Google Scholar 

  8. Miazgowski T, Czekalski S. A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with longstanding insulin-dependent diabetes mellitus. Osteoporos Int 1998; 8: 399–403.

    Article  CAS  PubMed  Google Scholar 

  9. Jehle PM, Jehle DR, Mohan S et al. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in type 1 and type 2 diabetes mellitus patients. J Endocrinol 1998; 159: 297–306.

    Article  CAS  PubMed  Google Scholar 

  10. Tuominen JT, Impivaara O, Puukka P et al. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 1999; 22: 1196–200.

    Article  CAS  PubMed  Google Scholar 

  11. Gallacher SJ, Fenner JA, Fisher BM et al. An evaluation of bone density and turnover in premenopausal women with type 1 diabetes mellitus. Diabet Med 1993; 10: 129–33.

    Article  CAS  PubMed  Google Scholar 

  12. Weber G, Beccaria L, deAngelis M et al. Bone mass in young patients with type I diabetes. Bone Miner 1990; 8: 23–30.

    Article  CAS  PubMed  Google Scholar 

  13. Alexopoulou O, Jamart J, Devogelaer JP et al. Bone density and markers of bone remodeling in type 1 male diabetic patients. Diabetes Metab 2006; 32: 453–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bjorgaas M, Haug E, Johnsen HJ. The urinary excretion of deoxypyridinium cross-links is higher in diabetic than in nondiabetic adolescents. Calcif Tissue Int 1999; 65: 121–4.

    Article  CAS  PubMed  Google Scholar 

  15. Karaguzel G, Akcurin S, Ozdem S et al. Bone mineral density and alterations of bone metabolism in children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2006; 19: 805–14.

    Article  PubMed  Google Scholar 

  16. Krakauer JC, McKenna MJ, Buderer NF et al. Bone loss and bone turnover in diabetes. Diabetes 1995; 44: 775–82.

    Article  CAS  PubMed  Google Scholar 

  17. Mathiassen B, Nielsen S, Johansen JS et al. Long-term bone loss in insulin-dependent patients with microvascular complications. J Diabetes Complicat 1990; 4: 145–9.

    Article  CAS  Google Scholar 

  18. Forst T, Pfutzner A, Kann P et al. Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabet Med 1995; 12: 874–9.

    Article  CAS  PubMed  Google Scholar 

  19. Piepkorn B, Kann P, Forst T et al. Bone mineral density and bone metabolism in diabetes mellitus. Horm Metab Res 1997; 29: 584–91.

    Article  CAS  PubMed  Google Scholar 

  20. Mastrandrea LD, Wactawski-Wende J, Donahue RP et al. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 2008; 31: 1729–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cummings SR, Nevitt MC, Browner WS et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332: 767–73.

    Article  CAS  PubMed  Google Scholar 

  22. Ivers RQ, Cumming RG, Mitchell P et al. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care 2001; 24: 1198–203.

    Article  CAS  PubMed  Google Scholar 

  23. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001; 24: 1192–7.

    Article  CAS  PubMed  Google Scholar 

  24. Wakasugi M, Wakao R, Tawata M et al. Bone mineral density measured by dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone 1993; 14: 29–33.

    Article  CAS  PubMed  Google Scholar 

  25. Van Daele PLA, Stolk RP, Burger H et al. Bone density in noninsulin- dependent diabetes mellitus. Ann Intern Med 1995; 122: 409–14.

    Article  PubMed  Google Scholar 

  26. Schwartz AV, Sellmeyer DE, Ensrud KE et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001; 86: 32–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sosa M, Dominguez M, Navarro MC et al. Bone mineral metabolism is normal in non-insulin-dependent diabetes mellitus. J Diabetes Complications 1996; 10: 201–5.

    Article  CAS  PubMed  Google Scholar 

  28. Forsen L, Meyer HE, Midthjell K et al. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trøndelag Health Survey. Diabetologia 1999; 42: 920–5.

    Article  CAS  PubMed  Google Scholar 

  29. Heath H, Melton LJ, Chu CP. Diabetes mellitus and risk of skeletal fracture. N Engl J Med 1980; 303: 567–70.

    Article  PubMed  Google Scholar 

  30. Melchior TM, Sorensen H, Torp-Pedersen C. Hip and distal arm fracture rates in peri- and postmenopausal insulin-treated diabetic females. J Intern Med 1994; 236: 203–8.

    Article  CAS  PubMed  Google Scholar 

  31. Barrett-Connor E, Holbrook TL. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 1992; 268: 3333–7.

    Article  CAS  PubMed  Google Scholar 

  32. Isaia GC, Ardissone P, Di Stefano M et al. Bone metabolism in type 2 diabetes mellitus. Acta Diabetol 1999; 36: 35–8.

    Article  CAS  PubMed  Google Scholar 

  33. Barrett-Connor E, Holbrook TL. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. J Am Med Assoc 1992; 268: 3333–7.

    Article  CAS  Google Scholar 

  34. Janghorbani M, Feskanich D, Willett WC et al. Prospective study of diabetes mellitus and risk of hip fracture: The Nurses’ Health Study. Diab Care 2006; 29: 1573–8.

    Article  Google Scholar 

  35. Korpelainen R, Korpelainen J, Heikkinen J et al. Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1,222 women. Osteoporos Int 2003; 14: 34–43.

    Article  CAS  PubMed  Google Scholar 

  36. Ottenbacher KJ, Ostir GV, Peek MK et al. Diabetes mellitus as a risk factor for hip fracture in Mexican-American older adults. J Gerontol A Biol Sci Med Sci 2002; 57: M648–53.

    Article  PubMed  Google Scholar 

  37. Kelsey JL, Browner WS, Seeley DG et al. Risk factors for fractures of the distal forearm and proximal humerus. The Study of Osteoporotic Fractures Research Group. Am J Epidemiol 1992; 135: 477–89.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer HE, Tverdal A, Falch JA. Risk factors for hip fracture in middle-aged Norwegian women and men. Am J Epidemiol 1993; 137: 1203–11.

    Article  CAS  PubMed  Google Scholar 

  39. Melton LJ III, Achenbach SJ, O’Fallon WM et al. Secondary osteoporosis and the risk of distal forearm fractures in men and women. Bone 2002; 31: 119–25.

    Article  PubMed  Google Scholar 

  40. Vogt MT, Cauley JA, Tomaino MM et al. Distal radius fractures in older women: a 10-year follow-up study of descriptive characteristics and risk factors. The Study of Osteoporotic Fractures. J Am Geriatr Soc 2002; 50: 97–103.

    Article  PubMed  Google Scholar 

  41. Ahmed LA, Joakimsen RM, Berntsen GK et al. Diabetes mellitus and the risk of non-vertebral fractures: the Tromsø Study. Osteoporos Int 2006; 17: 495–500.

    Article  PubMed  Google Scholar 

  42. Luetters CM, Keegan TH, Sidney S et al. Risk factors for foot fracture among individuals aged 45 years and older. Osteoporos Int 2004; 15: 957–63.

    Article  PubMed  Google Scholar 

  43. Lipscombe LL, Jamal SA, Booth GL et al. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 2007; 30: 835–41.

    Article  PubMed  Google Scholar 

  44. Adami S. Bone health in diabetes, considerations for clinical management. Current Med Res Opin 2009; 25: 1057–72.

    Article  Google Scholar 

  45. Schwartz AV, Hillier TA, Sellmeyer DE et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 2002; 25: 1749–54.

    Article  PubMed  Google Scholar 

  46. Carnevale V, Romagnoli E, D’Erasmo E. Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev 2004; 20: 196–204.

    Article  PubMed  Google Scholar 

  47. Moyer-Mileur LJ, Dixon SB, Quick JL, Askew EW, Murray MA. Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 2004; 145: 662.

    Article  PubMed  Google Scholar 

  48. Wientroub S, Eisenberg D, Tardiman R, Weissman SL, Salama R. Is diabetic osteoporosis due to microangiopathy? Lancet 1980; 2: 983.

    Article  CAS  PubMed  Google Scholar 

  49. Vogt MT, Cauley JA, Kuller LH, Nevitt MC. Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res 1997; 12: 283–9.

    Article  CAS  PubMed  Google Scholar 

  50. Campos Pastor MM, Lopez-Ibarra PJ, Escobar-Jimenez F, Serrano Pardo MD, Garcia-Cervigon AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 2000; 11: 455–9.

    Article  Google Scholar 

  51. Rigalleau V, Lasseur C, Raffaitin C et al. Bone loss in diabetic patients with chronic kidney disease. Diabet Med 2007; 24: 91–3.

    Article  CAS  PubMed  Google Scholar 

  52. Pei Y, Hercz G, Greenwood C et al. Renal osteodystrophy in diabetic patients. Kidney Int 1993; 44: 159–64.

    Article  CAS  PubMed  Google Scholar 

  53. Strotmeyer ES, Cauley JA, Schwartz AV et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, and Body Composition Study. Arch Intern Med 2005; 165: 1612–7.

    Article  PubMed  Google Scholar 

  54. Miao J, Brismar K, Nyren O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population- based cohort study in Sweden. Diabetes Care 2005; 28: 2850–5.

    Article  PubMed  Google Scholar 

  55. Heath H Jr, Lambert PW, Service FJ, Arnaud SB. Calcium homeostasis in diabetes mellitus. J Clin Endocrinol Metab 1979; 49: 462–6.

    Article  CAS  PubMed  Google Scholar 

  56. Thrailkill KM, Liu L, Wahl EC et al. Bone formation is impaired in a model of type 1 diabetes. Diabetes 2005; 54: 2875–81.

    Article  CAS  PubMed  Google Scholar 

  57. Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus: prevalence and aspect of pathophysiology. J Endocrinol Invest 2000; 23: 295–303.

    Article  CAS  PubMed  Google Scholar 

  58. Takagi M, Kasayama S, Yamamoto T et al. Advanced glycation end products stimulate interleukin-6 production by human bonederived cells. J Bone Miner Res 1997; 12: 439–46.

    Article  CAS  PubMed  Google Scholar 

  59. Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N. Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 1996; 11: 931–7.

    Article  CAS  PubMed  Google Scholar 

  60. Miyata T, Notoya K, Yoshida K et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 1997; 8: 260–70.

    Article  CAS  PubMed  Google Scholar 

  61. Hernandez CJ, Tang SY, Baumbach BM et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation- mediated collagen crosslinks. Bone 2005; 37: 825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone 2002; 31: 1–7.

    Article  PubMed  Google Scholar 

  63. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes J Clin Endocrinol Metab 2008; 93: 1013–9.

    Article  CAS  PubMed  Google Scholar 

  64. Karsenty G. Minireview: transcriptional control of osteoblast differentiation. Endocrinology 2001; 142: 2731–3.

    Article  CAS  PubMed  Google Scholar 

  65. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 2002; 143: 2376–84.

    Article  CAS  PubMed  Google Scholar 

  66. Akune T, Ohba S, Kamekura S et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004; 113: 846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lecka-Czernik B, Gubrij I, Moerman EJ et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem 1999; 74: 357–71.

    Article  CAS  PubMed  Google Scholar 

  68. Bonds DE, Larson JC, Schwartz AV et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 2006; 91: 3404–10.

    Article  CAS  PubMed  Google Scholar 

  69. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005; 48: 1292–9.

    Article  CAS  PubMed  Google Scholar 

  70. Räkel A, Sheehy O, Rahmeb E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 2008; 34: 193–205.

    Article  PubMed  Google Scholar 

  71. Saller A, Maggi S, Romanato G, Tonin P, Crepaldi G. Diabetes and osteoporosis. Aging Clin Exp Res 2008; 20: 280–9.

    Article  PubMed  Google Scholar 

  72. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005; 48: 1292–9.

    Article  CAS  PubMed  Google Scholar 

  73. Monami M, Cresci B, Colombini A et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008; 31: 199–203.

    Article  PubMed  Google Scholar 

  74. Cortizo AM, Sedlinsky C, McCarthy AD et al. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 2006; 536: 38–46.

    Article  CAS  PubMed  Google Scholar 

  75. Schurman L, McCarthy AD, Sedlinsky C et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 2008; 116: 333–40.

    Article  CAS  PubMed  Google Scholar 

  76. Kahn SE, Haffner S, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355: 2427–43.

    Article  CAS  PubMed  Google Scholar 

  77. Home PD, Jones NP, Pocock SJ et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med 2007; 24: 626–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dormandy JA, Charbonnel B, Eckland D et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89.

    Article  CAS  PubMed  Google Scholar 

  79. Meier C, Kraenzlin ME, Bodmer M et al. Use of thiazolidinediones and fracture risk. Arch Intern Med 2008; 168: 820–5.

    Article  CAS  PubMed  Google Scholar 

  80. Schwartz AV, Sellmeyer DE, Vittinghoff E et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 2006; 91: 3349–54.

    Article  CAS  PubMed  Google Scholar 

  81. Grey A, Bolland M, Gamble G et al. The peroxisome-proliferatoractivated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007; 92: 1305–10.

    Article  CAS  PubMed  Google Scholar 

  82. Rubin GL, Zhao Y, Kalus AM et al. Peroxisome proliferator activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 2000; 60: 1604–8.

    CAS  PubMed  Google Scholar 

  83. Seto-Young D, Paliou M, Schlosser J et al. Direct thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab 2005; 90: 6099–105.

    Article  CAS  PubMed  Google Scholar 

  84. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18 (Suppl 2): S10–5.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–9.

    Article  CAS  PubMed  Google Scholar 

  86. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 2009; 180: 32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Clowes J, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res 2005; 9: 1497–506.

    Article  Google Scholar 

  88. Bollag RJ, Zhong Q, Phillips P et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 2000, 141: 1228–35.

    Article  CAS  PubMed  Google Scholar 

  89. Zhong Q, Itokawa T, Sridhar S et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. AM J Physiol Endocrinol Metab 2007, 292: E543–8.

    Article  CAS  PubMed  Google Scholar 

  90. Xie D, Cheng H, Hamrick M et al. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 2005, 37: 759–69.

    Article  CAS  PubMed  Google Scholar 

  91. Xie D, Zhong Q, Ding KH et al. Glucose-dependent insulinotropic peptide overexpressing transgenic mice have increased bone mass. Bone 2007, 40: 1352–60.

    Article  CAS  PubMed  Google Scholar 

  92. Yamada C, Yamada Y, Tsukiyama K et al. The murine glucagonlike peptide-1 receptor is essential for control of bone resorption. Endocrinology 2008: 149; 574–9.

    Article  CAS  PubMed  Google Scholar 

  93. Nuche-Berenguer B, Moreno P, Esbrit P et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic and insulinresistant states. Calcif Tissue Int 2009; 84: 453–61.

    Article  CAS  PubMed  Google Scholar 

  94. Nuche-Berenguer B, Moreno P, Portal-Nunez S et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regulatory peptides 2010; 159: 61–6.

    Article  CAS  PubMed  Google Scholar 

  95. Keegan THM, Schwartz A, Bauer DC, Sellmeyer DE, Kelsey JL. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women. Diabetes Care 2004; 27:1547–53.

    Article  CAS  PubMed  Google Scholar 

  96. Johnell O, Kanis JA, Black DM et al. Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 2004; 19: 764–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Montagnani MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montagnani, A., Gonnelli, S., Alessandri, M. et al. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res 23, 84–90 (2011). https://doi.org/10.1007/BF03351073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03351073

Keywords

Navigation