Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 89))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott BC, Howarth JV (1973) Heat studies in excitable tissues. Physiol Rev. 53:120–158

    Google Scholar 

  • Aghemo P, Piñera-Limas F, Sassi G (1971) Maximal aerobic power in primitive indians. Int Z Angew Physiol 29:337–342

    Google Scholar 

  • Ahlborg G, Felig P (1977) Substrate utilization during prolonged exercise preceded by the ingestion of glucose. Am J Physiol 233:E188–E194

    Google Scholar 

  • Ahlborg B, Bergström J, Ekelund LG, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142

    Google Scholar 

  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino-acids. J Clin Invest 53:1080–1090

    Google Scholar 

  • Alpert NR, Root WS (1954) Relationship between excess respiratory metabolism and utilization of intravenously infused sodium racemic lactate and sodium L (-) lactate. Am J Physiol 177:455–462

    Google Scholar 

  • Altschuld RA, Brierley GP (1977) Interaction between the creatine kinase of heart mitochondria and oxidative phosphorilation. J Mol Cell Cardiol 9:875–896

    Google Scholar 

  • Ambrosoli G, Cerretelli P (1973) The anaerobic recovery of frog muscle. Pfluegers Arch 345:131–143

    Google Scholar 

  • Andersen KL, Bolstad A, Loyning A, Irving L (1960) Physical fitness of artic Indians. J Appl Physiol 15:645–648

    Google Scholar 

  • Andersen P, Henriksson J (1979) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol (Lond) 270:677–690

    Google Scholar 

  • Andres R, Cader G, Zierler KL (1956) The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest 35:671–682

    Google Scholar 

  • Asmussen E, Bonde-Petersen F (1974) Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 92:537–545

    Google Scholar 

  • Åstrand I (1958) The physical work capacity of workers 50–64 years old. Acta Physiol Scand 42:73–86

    Google Scholar 

  • Åstrand I (1960) Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand (Suppl) 169, pp 1–92

    Google Scholar 

  • Åstrand PO (1952) Experimental studies of physical working capacity in relation to sex and age. Munksgaard, Copenhagen

    Google Scholar 

  • Åstrand PO (1956) Human physical fitness with special reference to sex and age. Physiol Rev 36:307–335

    Google Scholar 

  • Åstrand PO (1973) Nutrition and physical performance. In: Rechcigl M (ed) Food nutrition and health. Karger, Basel (World review of nutrition and dietetics, vol 16, pp 59–79)

    Google Scholar 

  • Åstrand PO, Rodahl K (1977) Textbook of work physiology. McGraw-Hill, New York

    Google Scholar 

  • Åstrand PO, Cuddy TE, Saltin B, Stenberg J (1964) Cardiac output during submaximal and maximal work. J Appl Physiol 19:268–274

    Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Google Scholar 

  • Atwater WO (1904) Neue Versuche über Stoff-und Kraftwechsel im menschlichen Körper. Ergeb Physiol 3:497–622

    Google Scholar 

  • Bang O (1936) The lactate content of the blood during and after exercise in man. Skand Arch Physiol 74 (Suppl) 10:51–82

    Google Scholar 

  • Bannister EW, Jackson RC (1967) The effect of speed and load changes on oxygen intake for equivalent power outputs during bicycle ergometry. Arbeitsphysiolgie 24:284–290

    Google Scholar 

  • Barr DP, Himweck HE (1923) Studies in the physiology of muscular exercise. II. Comparison of arterial and venous blood following vigorous exercise. J Biol Chem 55:525–537

    Google Scholar 

  • Belcastro AN, Bonen A (1975) Lactic acid removal rate during controlled and uncontrolled recovery exercise. J Appl Physiol 39:932–936

    Google Scholar 

  • Benade AJS, Heisler N (1978) Comparison of efflux rates of hydrogen and lactate ions from isolated muscles in vitro. Respir Physiol 32:369–380

    Google Scholar 

  • Benedict FG, Cathcart EP (1913) Muscular work. Publication No 187, Carnegie Institute of Washington

    Google Scholar 

  • Berg WE (1947) Individual differences in respiratory gas exchange during recovery from moderate exercise. Am J Physiol 149:597–610

    Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    Google Scholar 

  • Bock AV, Vancaulert C, Dill DB, Fölling A, Hurxthal LM (1928a) Studies in muscular activity. III. Dynamical changes occurring in man at work. J Physiol (Lond) 66:136–161

    Google Scholar 

  • Bock AV, Vancaulert C, Dill DB, Fölling A, Hurxthal LM (1928b) Studies in muscular activity. IV. The “steady state” and the respiratory quotient during work. J Physiol (Lond) 66:162–174

    Google Scholar 

  • Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE (1971) Temperature, skeletal muscle mitochondrial functions and oxygen debt. Am J Physiol 220:1053–1059

    Google Scholar 

  • Brooks GA, Brauner KE, Cassens RG (1973) Glycogen synthesis and metabolism of lactic acid after exercise. Am J Physiol 224:1162–1166

    Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    Google Scholar 

  • Burk D (1929) The free energy of glycogen-lactic acid brakdown in muscle. Proc R Soc Lond (Biol) 104:153–170

    Google Scholar 

  • Canfield P, Maréchal G (1973) Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20°C. J Physiol (Lond) 232:453–466

    Google Scholar 

  • Canfield P, Lebacq J, Maréchal G (1973) Energy balance in frog sartorius muscle during an isometric tetanus at 20°C. J PHysiol (Lond) 232:467–483

    Google Scholar 

  • Carlson FD, Siger A (1960) The creatine phosphoryltransfer reaction in iodoacetate poisoned muscle. J Gen Physiol 43:301–313

    Google Scholar 

  • Carlson FD, Wilkie DR (1974) Muscle Physiology. Prentice-Hall, Englwodd Cliffs, N.J.

    Google Scholar 

  • Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werko L (1961) Myocardial metabolism of glucose, lactic acid, aminoacids and fatty acids in healthy human individuals at rest and different work loads. Scand J Clin Lab Invest 13:418–428

    Google Scholar 

  • Casaburi R, Whipp BJ, Wasserman K, Beaver WL, Koyal SN (1977) Ventilatory and gas exchange dynamics to sinusoidal work. J Appl Physiol 42:300–311

    Google Scholar 

  • Casaburi R, Weissman ML, Huntsman DJ, Whipp BJ, Wasserman K (1979) Determinants of gas exchange kinetics during exercise in the dog. J Appl Physiol 46:1054–1060

    Google Scholar 

  • Cavagna GA (1969) Travail mécanique dans la marche et la course. J Physiol (Paris) (Suppl) 61:3–42

    Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179

    Google Scholar 

  • Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481

    Google Scholar 

  • Cavagna GA, Saibene FP, Margaria R (1963) External work in walking. J Appl Physiol 18:1–9

    Google Scholar 

  • Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256

    Google Scholar 

  • Cavagna GA, Komarek L, Citterio G, Margaria R (1971) Power output of the previously stretched muscle. In: Biomechanics II. Karger, Basel. Vredenbregt J, Wartenweiler J (eds) Medicine and sport, vol 6, pp 159–167

    Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol (Lond) 262:639–657

    Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–261

    Google Scholar 

  • Cerretelli P (1967) Lactacid O2 debt in acute and chronic hypoxia. In: Margaria R (ed) Exercise at altitude. Excerpta Medica, Amsterdam Princeton London Geneva New York, pp 58–64

    Google Scholar 

  • Cerretelli P (1973) Fisiologia del lavoro e dello sport. Societa Editrice Universo, Rome

    Google Scholar 

  • Cerretelli P (1976) Limiting factors to oxygen transport on Mount Everest. J Appl Physiol 40:658–667

    Google Scholar 

  • Cerretelli P (1980) Oxygen debt: its role and significance. In: Moret PR, Weber J, Haissly J-Cl, Denolin H (eds) Lactate, physiologic, methodologic, and pathologic approach. Springer, Berlin Heidelberg New York, pp 73–86

    Google Scholar 

  • Cerretelli P, Brambilla I (1958) Cinetica della contrazione di un debito di O2 nell' uomo. Boll Soc Ital Biol Sper 34:679–682

    Google Scholar 

  • Cerretelli P, Radovani P (1960) Il massimo consume di O2 in atletic olimpionici di varie specilità. Boll Soc Ital Biol Sper 36:1871–1872

    Google Scholar 

  • Cerretelli P, Cantone A, Chiumello G (1961) Il compartamento degli acidi grassi liberi del sangue (NEFA) in funzione della durata e della intensità del lavoro muscolare. Boll Soc Ital Biol Sper 37:1660–1662

    Google Scholar 

  • Cerretelli P, Piiper J, Mangili F, Ricci B (1964) Aerobic and anaerobic metabolism in exercising dogs. J Appl Physiol 19:29–32

    Google Scholar 

  • Cerretelli P, Bordoni U, Debijadji R, Saracino F (1967) Respiratory and circulatory factors affecting the maximal aerobic power in hypoxia. Arch Fisiol 65:344–357

    Google Scholar 

  • Cerretelli P, di Prampero PE, Piiper J (1969) Energy balance of anaerobic work in the dog gastrocnemius muscle. Am J Physiol 217:581–585

    Google Scholar 

  • Cerretelli P, di Prampero PE, Ambrosoli G (1972) High energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle. Am J Physiol 222:1021–1026

    Google Scholar 

  • Cerretelli P, Ambrosoli G, Fumagalli M (1975) Anaerobic recovery in man. Eur J Appl Physiol 34:141–148

    Google Scholar 

  • Cerretelli P, Shindell D, Pendergast DP; di Prampero PE, Rennie DW (1977) Oxygen uptake transients at the onset and offset of arm and leg work. Res Physiol 30:81–97

    Google Scholar 

  • Cerretelli P, Pendergast D, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on VO2 on-response and early blood lactate. J Appl Physiol 47:761–769

    Google Scholar 

  • Cerretelli P, Veicsteinas A, Marconi C (to be published) Anaerobic metabolism at high altitude: the lactacid mechanism. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)

    Google Scholar 

  • Chance B, Mauriello G, Aubert X (1962) ADP arrival at muscle mitochondria following a twitch. In: Rodahl K, Horvath SM (eds) Muscle as a tissue. McGraw-Hill, New York, pp 128–145

    Google Scholar 

  • Chaplain RA, Frommelt B (1972) The energetics of muscular contraction. I. Total energy output and phosphorylcreating splitting in isovelocity and isotonic tetani of frog sartorius. Pfluegers Arch 334:167–180

    Google Scholar 

  • Chauveau M, Kaufmann M (1887) Expériences pour la détermination du coefficient de l'activité nutritivie et respiratoire des muscles en repose et en travail. C R Acad Sci (D) (Paris) 104:1126–1132

    Google Scholar 

  • Chauveau A, Tissot J (1896) L'énergie dépensée par le muscle en contraction statique pour le soutien d'une charge d'après les échanges respiratoires. C R Acad Sci (D) (Paris) 123:1236–1241

    Google Scholar 

  • Christensen EH, Hansen O (1939a) Untersuchungen über die Verbrennungsvorgänge bei langdauern der, schwerer Muskelarbeit. Skand Arch Physiol 81:152–159

    Google Scholar 

  • Christensen EH, Hansen O (1939b) Arbeitsfähigkeit und Ernährung. Skand Arch Physiol 81:160–171

    Google Scholar 

  • Christensen EH, Hansen O (1939c) Hypoglykämie, Arbeitsfähigkeit und Ermüdung. Skand Arch Physiol 81:172–179

    Google Scholar 

  • Clausen JP (1977) Effect of physical training on cardiovascular adjustments in man. Physiol Rev 57:779–815

    Google Scholar 

  • Costill DL (1970) Metabolic responses during distance running. J Appl Physiol 28:251–255

    Google Scholar 

  • Crescitelli F, Taylor C (1944) The lactate response to exercise and its relationship to physical fitness. Am J Physiol 141:630–640

    Google Scholar 

  • Curtin NA, Woledge RC (1974) Energetics of relaxation in frog muscle. J Physiol (Lond) 238:437–446

    Google Scholar 

  • Curtin NA, Woledge RC (1975) Energy balance in DNFB-treated and untreated frog muscle. J Physiol (Lond) 246:737–752

    Google Scholar 

  • Curtin NA, Woledge RC (1978) Energy changes and muscular contraction. Physiol Rev 58:690–761

    Google Scholar 

  • Curtin NA, Gilbert C, Kretzschmar KM, Wilkie DR (1974) The effect of the performance of work on total energy output and metabolism during muscular contraction. J Physiol (Lond) 238:455–472

    Google Scholar 

  • Danilewsky A (1880) Thermodynamische Untersuchungen der Muskeln. Pfluegers Arch Gesamte Physiol 21:109–152

    Google Scholar 

  • Davies CTM, Crockford GW (1971) The kinetics of recovery oxygen intake and blood lactic acid concentration measured to a baseline of mild steady work. Ergonomics 14:721–731

    Google Scholar 

  • Davies CTM, Rennie R (1968) Human power output. Nature 217:770–771

    Google Scholar 

  • Davies CTM, Sargeant AJ (1974) Indirect determination of maximal aerobic power output during work with one or two limbs. Eur J Appl Physiol 32:207–215

    Google Scholar 

  • Davies CTM, van Haaren JPM (1973) Maximum aerobic power and body composition in healthy east african older male and female subjects. Am J Physiol Anthropol 39:395–402

    Google Scholar 

  • Davies CTM, Barnes C, Fox RH, Osikuto RO, Samueloff AS (1972a) Ethnic differences in physical working capacity. J Appl Physiol 33:726–732

    Google Scholar 

  • Davies CTM di Prampero PE, Cerretelli P (1972b) Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J Appl Physiol 32:618–625

    Google Scholar 

  • Davies CTM (1980) Effects of wind assistance and resistance on the forward motion of a runner. J Appl Physiol 48:702–709

    Google Scholar 

  • Davies CTM (to be published) The physiology of ultra-long distance running. In: di Prampero PE, Poortmans J (eds) Medicine and sport: first international course of physiological chemistry of exercise and training. Karger, Basel

    Google Scholar 

  • de Furia RR, Kushmerick MJ (1977) ATP utilization associated with recovery metabolism in anaerobic frog muscle. Am J Physiol 232:C30–C36

    Google Scholar 

  • de Moor J (1954) Individual differences in oxygen debt curves related to mechanical efficiency and sex. J Appl Physiol 6:460–466

    Google Scholar 

  • Diamant B, Karlsson J, Saltin B (1968) Muscle tissue lactate after maximal exercise in man. Acta Physiol Scand 72:383–384

    Google Scholar 

  • Diamond LB, Casaburi R, Wasserman K, Whipp BJ (1977) Kinetics of gas exchange and ventialtion in transition from rest or prior exercise. J Appl Physiol 43:704–708

    Google Scholar 

  • Dickinson S (1929) The efficiency of bicycle-pedaling, as affected by speed and load. J Physiol (Lond) 67:242–255

    Google Scholar 

  • Dill DB (1936) The economy of exercise. Physiol Rev 16:263–291

    Google Scholar 

  • Dill DB, Edwards HT, Talbot JH (1933) Studies in muscular activity. VII. Factors limiting the capacity for work. J Physiol (Lond) 77:49–62

    Google Scholar 

  • Dill DB, Edwards HT, Newman EV, Margaria R (1936) Analysis of recovery from anaerobic work. Arbeitsphysiologie 9:299–307

    Google Scholar 

  • di Prampero PE (1972) Energétique de l'exercise musculaire. J Physiol (Paris) 65:51A–86A

    Google Scholar 

  • di Prampero PE (1976) Energy stores and supply in exercise. In: Jokl A, Anaud RL, Stoboy H (eds) Advances in exercise physiology. Karger, Basel (Medicine and sport, vol 9, pp 132–146)

    Google Scholar 

  • di Prampero PE, Cerretelli P (1969) Maximal muscular power (aerobic and anaerobic) in african natives. Ergonomics 12:51–59

    Google Scholar 

  • di Prampero PE, Margaria R (1968) Relationship between O2 consumption, high energy phosphates and the kinetics of O2 debt in exercise. Pfluegers Arch 304:11–19

    Google Scholar 

  • di Prampero PE, Cerretelli P, Piiper J (1969) O2 consumption and metabolite balance in the dog gastrocnemius at rest and during exercise. Pfluegers Arch 309-38–47

    Google Scholar 

  • di Prampero PE, Davies CTM, Cerretelli P, Margaria R (1970a) An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 29:547–551

    Google Scholar 

  • di Prampero PE, Piñera Limas F, Sassi G (1970b) Maximal muscular power (aerobic and anaerobic) in 116 athletes performing at the XIX Olympic Games in Mexico. Ergonomics 13:665–674

    Google Scholar 

  • di Prampero PE, Cortili G, Celentano F, Cerretelli P (1971) Physiological aspects of rowing. J Appl Physiol 31:853–857

    Google Scholar 

  • di Prampero PE, Peeters L, Margaria R (1973) Alactic O2 debt and lactic acid production after exhausting exercise in man. J Appl Physiol 34:628–633

    Google Scholar 

  • di Prampero PE Cortili G, Mognoni P, Saibene F (1976) The energy cost of speed-skating and the efficiency of work against the air resistance. J Appl Physiol 40:584–591

    Google Scholar 

  • di Prampero PE, Meyer M, Cerretelli P, Piiper J (1978a) Energetics of anaerobic glycolysis in dog gastrocnemius. Pfluegers Arch 377:1–8

    Google Scholar 

  • di Prampero PE, Pendergast DR, Wilson DW, Rennie DW (1978b) Blood lactic acid concentrations in high velocity swimming. In: Eriksson B, Furberg B (eds) Swimming medicine IV. University Park Press, Baltimore, pp 249–261

    Google Scholar 

  • di Prampero PE, Cortili G, Mognoni P, Saibene F (1979a) Equation of motion of a cyclist. J Appl Physiol 47:201–206

    Google Scholar 

  • di Prampero PE, Mognoni P, Saibene F (1979b) Internal power in cycling. Experientia 35:925

    Google Scholar 

  • di Prampero PE, Veicsteinas A, Gussoni M (1980) O2 stores and O2 transients at exercise in man. Proc Int Un Physiol Sci XIV:381

    Google Scholar 

  • di Prampero PE, Meyer M, Cerretelli P, Piiper J (to be published a) Anaerobic energy sources in exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • di Prampero PE, Mognoni P, Veicsteinas A (to be published b) The effects of hypoxia on maximal anaerobic alactic power in man. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)

    Google Scholar 

  • Edwards HT (1936) Lactic acid in rest and work at high altitude. Am J Physiol 116:367–375

    Google Scholar 

  • Edwards RHT, Hill DK, Jones DA (1975) Heat production and chemical changes during isometric contractions of the human quadriceps muscle. J Physiol (Lond) 251:303–315

    Google Scholar 

  • Eggleton P, Eggleton GP (1927a) The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the dog. Biochem J 21:190–195

    Google Scholar 

  • Eggleton P, Eggleton GP (1927b) The physiological significance of phosphate. J Physiol (Lond) 63:155–161

    Google Scholar 

  • Ekblom R, Goldbarg NA, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180

    Google Scholar 

  • Embden G, Lawaczeck H (1922) Über die Bildung anorganischer Phosphorsäure bei der Kontraktion des Froschmuskels. Biochem Z 127:181–199

    Google Scholar 

  • Engelhardt VA, Lyubimova MN (1939) Myosin and adenosine-triphosphatase. Nature 144:668–669

    Google Scholar 

  • Engelmann TW (1895) On the nature of muscular contraction. Proc R Soc Lond (Biol) 57:411–435

    Google Scholar 

  • Fagraeus L, Karlsson J, Linnarsson D, Saltin B (1973) Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiol Scand 87:411–421

    Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–953

    Google Scholar 

  • Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:583–611

    Google Scholar 

  • Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462

    Google Scholar 

  • Fick A (1893) Einige Bemerkungen zu Engelmann's Abhandlung über den Ursprung der Muskelkraft. Pfluegers Arch 53:606–615

    Google Scholar 

  • Fiske CH, Subbarow Y (1927) The nature of inorganic phosphate in the voluntary muscle. Science 65:401–403

    Google Scholar 

  • Fiske CH, Subbarow Y (1928) The isolation and function of phosphocreatine. Science 67:169–171

    Google Scholar 

  • Flandrois R, Puccinelli R, Houdas Y, Lefrancois R (1962) Comparison des consommations maximales d'oxygène mesurée et théorique d'une population française. J Physiol (Paris) 54:301–302

    Google Scholar 

  • Flandrois R, Lacour JR, Charbonnier JP, Gressier M, Genety J (1973) Capacité aérobie chez l'athlète français. Med Sport 47:186–189

    Google Scholar 

  • Fletcher WM, Hopkins FG (1906–07) Lactic acid in amphibian muscle. J Physiol (Lond) 35:247–309

    Google Scholar 

  • Fletcher WM, Hopkins FG (1917) Croonian Lecture of 1915: The respiratory process in muscle and the nature of muscular motion. Proc R Soc Lond (Biol) 89:444–467

    Google Scholar 

  • Forsberg A, Tesch B, Sjodin A, Thorstensson A, Karlsson J (1976) Skeletal muscle fibers and athletic performance. In: Komi PV (ed) Biomechanics V/A. University Park Press, Baltimore, pp 112–117

    Google Scholar 

  • Fox EL, Robinson S, Wiegman DL (1969) Metabolic energy sources during continuous and interval running. J Appl Physiol 27:174–178

    Google Scholar 

  • Freund HJ, Budingen HJ, Dietz V (1975) Activity of single motor units from human forearm muscles during voluntary isometric contractions. J Neurophysiol 38:933–946

    Google Scholar 

  • Freund H, Gendry P (1978) Lactate kinetics after short strennous exercise in man. Eur J Appl Physiol 39:123–135

    Google Scholar 

  • Freyschuss U, Strandell T (1967) Limb circulation during arm and leg exercise in supine position. J Appl Physiol 23:163–170

    Google Scholar 

  • Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-state exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139

    Google Scholar 

  • Gilbert R, Auchincloss JH Jr, Baule GH (1967) Metabolic and circulatory adjustments to unsteady state exercise. J Appl Physiol 22:905–912

    Google Scholar 

  • Gilbert C, Kretzschmar KM, Wilkie DR, Woledge RC (1971) Chemical change and energy output during muscular contraction. J Physiol (Lond) 218:163–193

    Google Scholar 

  • Gladden LB, Welch HG (1978) Efficiency of anaerobic work. J Appl Physiol 44:564–570

    Google Scholar 

  • Glick Z, Schwartz E (1974) Physical working capacity of young men of different ethnic groups in Israel. J Appl Physiol 37:22–26

    Google Scholar 

  • Gollnick PD, Armstrong RB, Sauberg CV, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33:312–319

    Google Scholar 

  • Gower D, Kretzschmar KM (1976) Heat production and chemical change during isometric contraction of rat soleus muscle. J. Physiol (Lond) 258:659–671

    Google Scholar 

  • Hagberg JM, Mullin JP, Nagle FJ (1978a) Oxygen consumption during constant load exercise. J Appl Physiol 45:381–384

    Google Scholar 

  • Hagberg JM, Nagle FJ, Carlson JL (1978b) Transient O2 uptake response at the onset of exercise. J Appl Physiol 44:90–92

    Google Scholar 

  • Harris RC, Edwards RHT, Hultman E, Nordesjö LO, Nylind B, Sahlin K (1976) The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pfluegers Arch 367:137–142

    Google Scholar 

  • Harris RC, Sahlin K, Hultman E (1977) Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. J Appl Physiol 43:852–857

    Google Scholar 

  • Heidenhain R (1864) Mechanische Leistung, Wärmeentwicklung und Stoffumsatz bei der Muskeltätigkeit. Breitkopf u. Härtel, Leipzig

    Google Scholar 

  • Heineman HN (1901) Experimentelle Untersuchungen am Menschen über den Einfluß der Muskelarbeit auf den Stoffverbrauch und die Bedeutung der einzelnen Nährstoffe als Quelle der Muskelkraft. Pfluegers Arch 83:441–476

    Google Scholar 

  • Helmholtz H (1847) Über die Erhaltung der Kraft. G. Reimer

    Google Scholar 

  • Henneman E, Olson CB (1965) Relation between structure and function in the design of skeletal muscle. J Neurophysiol 28:581–589

    Google Scholar 

  • Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol (Lond) 270:661–675

    Google Scholar 

  • Henry FM (1951) Aerobic oxygen consumption and alactic debt in muscular work. J Appl Physiol 3:427–438

    Google Scholar 

  • Henry FM, Berg WE (1950) Physiological and performance changes in athletic conditioning. J Appl Physiol 3:103–111

    Google Scholar 

  • Henry FM, de Moor J (1950) Metabolic efficiency of exercise in relation to work load at constant speed. J Appl Physiol 2:481–487

    Google Scholar 

  • Henry FM, de Moor J (1956) Lactic and alactic oxygen consumption in moderate exercise of graded intensity. J Appl Physiol 8:608–614

    Google Scholar 

  • Hermansen L (1971) Lactate production during exercise. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 401–407

    Google Scholar 

  • Hermansen L, Andersen KL (1965) Aerobic work capacity in young norwegian men and women. J Appl Physiol 20:425–431

    Google Scholar 

  • Hermansen L, Osnes JB (1972) Blood and muscle pH after maximal exercise in man. J Appl Physiol 32:304–308

    Google Scholar 

  • Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise in man. Acta Physiol Scand 86:191–201

    Google Scholar 

  • Hermansen L, Vaage O (1977) Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am J Physiol 233:E422–E429

    Google Scholar 

  • Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Google Scholar 

  • Hickson RC, Bomze HA, Holloszy JO (1978) Faster adjustments of O2 uptake to the energy requirement of exercise in the trained state. J Appl Physiol 44:877–881

    Google Scholar 

  • Hill AV (1913) The energy degraded in the recovery processes of stimulated muscles. J Physiol (Lond) 46:28–80

    Google Scholar 

  • Hill AV (1916) Die Beziehungen zwischen der Wärmebildung und den im Muskel stattfindenden chemischen Prozessen. Ergeb Physiol 15:340–479

    Google Scholar 

  • Hill AV (1922) The maximum work and mechanical efficiency of human muscles and their most economical speed. J Physiol (Lond) 56:19–41

    Google Scholar 

  • Hill AV (1939) The mechanical efficiency of frog's muscle. Proc R Soc Lond (Biol) 126:434–451

    Google Scholar 

  • Hill AV (1964) The efficiency of mechanical power development during muscular shortening and its relation to load. Proc R Soc Lond (Biol) 159:319–324

    Google Scholar 

  • Hill AV (1965) Trails and trials in physiology. Arnold, London

    Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Parts IV–VI. Proc R Soc Lond (Biol) 97:84–138

    Google Scholar 

  • Hirche H, Grün D, Waller W (1970) Utilisation of carbohydrates and free fatty acids by the gastrocnemius of the dog during long lasting rhythmical exercise. Pfluegers Arch 321:121–132

    Google Scholar 

  • Hirche H, Wacker U, Langohr HD (1971) Lactic acid formation in the working gastrocnemius of the dog. Int Z Physiol 30:52–64

    Google Scholar 

  • Holloszy JO (1976) Adaptation of muscular tissue to training. Prog Cardiovasc Dis 18:445–458

    Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Google Scholar 

  • Holloszy JO, Oscai LB, Mole PA, Don JI (1971) Biochemical adaptations to endurance exercise in skeletal muscle. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 51–61

    Google Scholar 

  • Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Annu Rev Physiol 40:93–131

    Google Scholar 

  • Homsher E, Rall JA, Wallner A, Ricchiuti NV (1975) Energy liberation and chemical change in frog skeletal muscle during single isometric contractions. J Gen Physiol 65:1–21

    Google Scholar 

  • Hubbard JL (1973) The effect of exercise on lactate metabolism. J Physiol (Lond) 231:1–18

    Google Scholar 

  • Hultman E, Bergström J, McLennon Anderson N (1967) Break-down and resynthesis of phosphorylcreatine and adenosine-triphosphate in connection with muscular work in man. Scand J Lab Invest 19:56–66

    Google Scholar 

  • Ikuta K, Ikai M (1972) Study on the development of maximum anaerobic power in man with bicycle ergometer. Res J Physiol Ed (Japan) (Research Journal of Physical Education) 17:151–157

    Google Scholar 

  • Issekutz B, Shaw WAS, Issekutz AC (1976) Lactate metabolism in resting and exercising dogs. J Appl Physiol 40:312–319

    Google Scholar 

  • Jorfeldt L (1970) Metabolism of (+)-lactate in human skeletal muscle during exercise. Acta Physiol Scand (Suppl) 338:1–67

    Google Scholar 

  • Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human sekeletal muscle during exercise. J Appl Physiol 44:350–352

    Google Scholar 

  • Kaijser L (1970) Limiting factors for aerobic muscle performance. Acta Physiol Scand (Suppl) 346:1–96

    Google Scholar 

  • Karlsson J (1971) Lactate and phosphagen concentration in working muscle of man. Acta Physiol Scand (Suppl) 358:1–72

    Google Scholar 

  • Karlsson J, Saltin B (1970) Lactate, ATP and CP in working muscles during exhaustive exercise in man. J Appl Physiol 29:598–602

    Google Scholar 

  • Karlsson J, Saltin B (1971) Diet, muscle glycogen and endurance performance. J Appl Physiol 31:203–206

    Google Scholar 

  • Karlsson J, Nordesjö LO, Jorfeldt L, Saltin B (1972a) Muscle lactate, ATP and CP levels during exercise after physical training. J Appl Physiol 33:199–203

    Google Scholar 

  • Karlsson J, Rosell S, Saltin B (1972b) Carbohydrate and fat metabolism in contracting canine skeletal muscle. Pfluegers Arch 331:57–69

    Google Scholar 

  • Karlsson J, Bonde-Petersen F, Henriksson J, Knuttgen HG (1975) Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise. J Appl Physiol 38:763–767

    Google Scholar 

  • Katch VL (1973) Kinetics of oxygen uptake and recovery for supramaximal work of short duration. Int Z angew Physiol 31:197–207

    Google Scholar 

  • Klausen K, Knuttgen HG, Forster HV (1972) Effect of pre-existing high blood lactate concentration on maximal exercise performance. Scand J Clin Invest 30:415–419

    Google Scholar 

  • Klausen K, Rasmussen B, Clausen JP, Trap-Jensen J (1974) Blood lactate from exercising extremities before and after arm or leg training. Am J Physiol 227:67–72

    Google Scholar 

  • Klissouras V (1971) Heritability of adaptive variation. J Appl Physiol 31:338–344

    Google Scholar 

  • Klissouras V, Pirnay F, Petit JM (1973) Adaptation to maximal effort: genetics and age. J Appl Physiol 35:288–293

    Google Scholar 

  • Klotz IM (1967) Energy changes in biochemical reactions. Academic Press, New York London, pp 34–35

    Google Scholar 

  • Knuttgen HG (1962) Oxygen debt, lactate, pyruvate and excess lactate after muscular work. J Appl Physiol 17:639–644

    Google Scholar 

  • Knuttgen HG (1970) Oxygen debt after submaximal physical exercise. J Appl Physiol 29:651–657

    Google Scholar 

  • Knuttgen HG, Klausen K (1971) O2 debt in short term exercise with concentric and excentric muscle contractions. J Appl Physiol 30:632–635

    Google Scholar 

  • Knuttgen HG, Saltin B (1972) Muscle metabolites and oxygen uptake in short term submaximal exercise in man. J Appl Physiol 32:690–694

    Google Scholar 

  • Knuttgen HG, Saltin B (1973) Oxygen uptake, muscle high energy phosphates and lactate in exercise under acute hypoxic conditions in man. Acta Physiol Scand 87:368–376

    Google Scholar 

  • Kobayashi K, Kitamura K, Miura M, Sodeyama H, Murase Y, Miyashita M, Matsui H (1978) Aerobic power as related to body growth and training in Japonese boys: a longitudinal study. J Appl Physiol 44:666–672

    Google Scholar 

  • Komi PV, Karlsson J (1978) Skeletal muscle fiber types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 103:210–218

    Google Scholar 

  • Komi PV, Karlsson T (1979) Physical performance, skeletal muscle enzyme activities and fibre types in monozygous and dizygous twins of both sexes. Acta Physiol Scand (Suppl) 462:1–28

    Google Scholar 

  • Komi PV, Viitasalo JT, Havu M, Thorstensson A, Karlsson J (1976) Physiological and structural performance capacity: effect of heredity. In: Komi PV (ed) Biomechanics V/A. University Park Press, Baltimore, pp 118–123

    Google Scholar 

  • Komi PV, Rusko H, Vos J, Vihko V (1977) Anaerobic performance capacity in athletes. Acta Physiol Scand 100:107–114

    Google Scholar 

  • Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. J Biol Chem 210:65–82

    Google Scholar 

  • Kushmerick MJ (1977) Energy balance in muscle contraction: a biochemical approach. Curr Top Bioenerg 6:1–37

    Google Scholar 

  • Kushmerick MJ, Davies RE (1969) The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc R Soc Lond (Biol) 174:315–353

    Google Scholar 

  • Lacour JP, Flandrois R (1977) Le rôle du métabolisme aérobie dans l'exercise intense de longue durée. J Physiol (Paris) 73:89–130

    Google Scholar 

  • Lammert O (1972) Maximal aerobic power and energy expenditure of eskimo hunters in Greenland. J Appl Physiol 33:184–188

    Google Scholar 

  • Lange-Andersen K (1960) Respiration recovery from muscular exercise of short duration. Acta Physiol Scand (Suppl) 168:1–102

    Google Scholar 

  • Leary WP, Wyndham CH (1965) The capacity for maximum physical effort of Caucasian and Bantu athletes of international class. S Afr Med J 39:651–655

    Google Scholar 

  • Lehninger AL (1971) Bioenergetics. Benjamin, Menlo Park, p 42

    Google Scholar 

  • Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand (Suppl) 415:1–68

    Google Scholar 

  • Lloyd BB, Zacks RM (1972) The mechanical efficiency of treadmill running against a horizontal impeding force. J Physiol (Lond) 223:355–363

    Google Scholar 

  • Lohmann K (1928) Über die Isolierung verschiedener natürlicher Phosphorsäureverbindungen und die Frage ihrer Einheitlichkeit. Biochem Z 194:306–327

    Google Scholar 

  • Lohmann K (1934) Über die enzymatische Aufspaltung der Kreatin-phosphorsäure, zugleich ein Beitrag zur Muskelkontraktion. Biochem Z 271:264–277

    Google Scholar 

  • Lukin L, Ralston HJ (1962) Oxygen deficit and repayment in exercise. Arbeitsphysiologie 19:183–193

    Google Scholar 

  • Lundsgaard E (1930) Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 217:162–177; 227:51–82

    Google Scholar 

  • Mahler M (1978) Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20°C. J Gen Physiol 71:559–580

    Google Scholar 

  • Mahler M (1979) The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20°C. J Gen Physiol 73:159–174

    Google Scholar 

  • Marconi C, Pendergast D, Krasney J, Rennie DW, Cerretelli P (to be published) Dynamic and steady state metabolic changes in running dogs. J Appl Physiol

    Google Scholar 

  • Maréchal G (1964) Le métabolisme de la phosphorylcréatine et de l'adénosine triphosphate durant la contraction musculaire. Arscia, Bruxelles; Maloine, Paris

    Google Scholar 

  • Maréchal G (1972) Les sources d'énergie immédiate de la contraction musculaire. J Physiol (Paris) 65:5A–50A

    Google Scholar 

  • Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corse a varia velocità ed inclinazione del terreno. Atti Reale Acc Naz Lincei 7:299–368

    Google Scholar 

  • Margaria R (1939) Die Verwertung von Kohlehydraten und ihre Unentbehrlichkeit bei Muskelarbeit. Arbeitsphysiologie 10:539–552

    Google Scholar 

  • Margaria R (1967) Aerobic and anaerobic energy sources in muscular exercise. In: Margaria R (ed) Exercise at altitude. Excerpta Medica, Amsterdem Princeton, London Geneva New York, pp 15–32

    Google Scholar 

  • Margaria R (1968) Positive and negative work performances and their efficiencies in human locomotion. Int Z angew Physiol 25:339–351

    Google Scholar 

  • Margaria R (1976) Biomechanics and energetics of muscular exercise. Oxford University Press, Oxford

    Google Scholar 

  • Margaria R, Edwards HT (1934a) The removal of lactic acid from the body during recovery from muscular exercise. Am J Physiol 107:681–686

    Google Scholar 

  • Margaria R, Edwards HT (1934b) The sources of energy in muscular work performed in anaerobic conditions. Am J Physiol 108:341–348

    Google Scholar 

  • Margaria R, Foà P (1939) Der Einfluß der Muskelarbeit auf den Stickstoffwechsel, die Kreatin-und Säureausscheidung. Arbeitsphysiologie 10:553–560

    Google Scholar 

  • Margaria R, Moruzzi G (1937) Il ristoro anaerobico del muscolo. Arch Fisiol 37:203–216

    Google Scholar 

  • Margaria R, Edwards HT, Dill DB (1933) The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 106:689–714

    Google Scholar 

  • Margaria R, Cerretelli P, Marchi S, Rossi L (1961) Maximum exercise in oxygen. Int Z angew Physiol 18:465–467

    Google Scholar 

  • Margaria R, Cerretelli P, Aghemo P, Sassi G (1963a) Energy cost of running. J Appl Phsiol 18:367–370

    Google Scholar 

  • Margaria R, Cerretelli P, di Prampero PE, Massari C, Torelli G (1963b) Kinetics and mechanism of oxygen debt contraction in man. J Appl Physiol 18:371–377

    Google Scholar 

  • Margaria R, Cerretelli P, Mangili F (1964) Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 19:623–628

    Google Scholar 

  • Margaria R, Mangili F, Cuttica F, Cerretelli P (1965) The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8:49–54

    Google Scholar 

  • Margaria R, Aghemo P, Rovelli E (1966) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664

    Google Scholar 

  • Margaria R, Aghemo P, Sassi G (1971a) Lactic acid production in supramaximal exercise. Pfluegers Arch 326:152–161

    Google Scholar 

  • Margaria R, di Prampero PE, Aghemo P, Derevenco P, Mariani M (1971b) Effect of a steady state exercise on maximal anaerobic power in man. J Appl Physiol 30:885–889

    Google Scholar 

  • Margaria R, Camporesi E, Aghemo P, Sassi G (1972) The effect of O2 breathing on maximal aerobic power. Pfluegers Arch 336:225–235

    Google Scholar 

  • Maton B (1977) Fréquence et recrutement des unités motrices du muscle biceps brachial au cours du travail statique chez l'homme normal. J Physiol (Paris) 73:177–199

    Google Scholar 

  • Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel. Drecholerchen, Heilbronn

    Google Scholar 

  • McGilvery RW (1975) The use of fuels for muscular work. In: Howald H, Poortmans JR (eds) Metabolic adaptation to prolonged physical exercise. Birkhäuser, Basel, pp 12–30

    Google Scholar 

  • McGrail JC, Bonen A, Belcastro AN (1978) Dependence of lactate removal on muscle metabolism in man. Eur J Appl Physiol 39:89–95

    Google Scholar 

  • Meyerhof O (1920) Die Energieumwandlungen im Muskel. I. Über die Beziehungen der Milchsäure zur Wärmebildung und Arbeitsleistung des Muskels in der Anaerobiose. Pfluegers Arch 182:232–283

    Google Scholar 

  • Meyerhof O (1921) Die Energieumwandlungen im Muskel. V. Milchsäurebildung und mechanische Arbeit. Pfluegers Arch 191:128–183

    Google Scholar 

  • Meyerhof O (1922) Die Energieumwandlungen im Muskel. VI. Über den Ursprung der Kontraktionswärme. Pfluegers Arch 195:22–74

    Google Scholar 

  • Meyerhof O (1924) Die Energieumwandlungen im Muskel. VII. Weitere Untersuchungen über den Ursprung der Kontraktionswärme. Pfluegers Arch 204:295–331

    Google Scholar 

  • Meyerhof O (1930) Die chemischen Vorgänge im Muskel und ihr Zusammenhang mit Arbeitsleistung und Wärmebildung. Springer, Berlin

    Google Scholar 

  • Milner-Brown HS, Stein RB, Yemm R (1973) The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol (Lond) 230:359–370

    Google Scholar 

  • Minaire Y (1973) Origine et destinée du lactate plasmatique. J Physiol (Paris) 66:229–257

    Google Scholar 

  • Mommaerts WFHM (1969) Energetics of muscular contraction. Physiol Rev 49:427–508

    Google Scholar 

  • Morowitz HJ (1978) Proton semiconductors and energy transduction in biological systems. Am J Physiol 235:R99–R114

    Google Scholar 

  • Murase Y, Hoshikawa T, Yasuda N, Ikegami Y, Matsui H (1976) Analysis of the changes in progressive speed during 100-m dash. In: Komi PV (ed) Biomechanics V/B. University Park Press, Baltimore, pp 200–207

    Google Scholar 

  • Nachmanson D (1928) Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit der Tätigkeit des Muskels. Biochem Z 196:73–97

    Google Scholar 

  • Needham DM (1971) Machina carnis. Cambridge University Press, Cambridge Melbourne New York, pp 1–40

    Google Scholar 

  • Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactataemia and hypoglycemia. Stroke 5:48–53

    Google Scholar 

  • Newman EV, Dill DB, Edwards HT, Webster FA (1937) The rate of lactic acid removal in exercise. Am J Physiol 118:457–462

    Google Scholar 

  • Newsholme EA, Start C (1973) Regulation in metabolism. Wiley & Sons, London, pp 88–137

    Google Scholar 

  • Nielsen M, Hansen O (1937) Maximale körperliche Arbeit bei O2 reicher Luft. Skand Arch Physiol 76:37–59

    Google Scholar 

  • Osnes JB, Hermansen L (1972) Acid base balance after maximal exercise of short duration. J Appl Physiol 32:59–63

    Google Scholar 

  • Pahud P, Ravussin F, Jéquier E (1980) Energy expended during the oxygen deficit period of submaximal exercise in man. J Appl Physiol 48:770–775

    Google Scholar 

  • Pearce DH, Milhorn HT Jr (1977) Dynamic and steady-state respiratory responses to bicycle exercise. J Appl Physiol 42:959–967

    Google Scholar 

  • Pendergast D, Cerreteilli P, Rennie DW (1979) Aerobic and glycolytic metabolism in arm exercise. J Appl Physiol 47:754–760

    Google Scholar 

  • Pettenkofer M, Voit C (1866) Untersuchungen über den Stoffverbrauch des normalen Menschen. Z Biol 2:459–573

    Google Scholar 

  • Piiper J, Spiller P (1970) Repayment of O2 debt and resynthesis of high energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol 28:657–662

    Google Scholar 

  • Piiper J, di Prampero PE, Cerretelli P (1968) Oxygen debt and high energy phosphates in gastrocnemius muscle of the dog. Am J Physiol 215:523–531

    Google Scholar 

  • Pirnay F, Crielaard JM (1979) Mesure de la puissance anaérobie alactique. Med Sport 53:13–16

    Google Scholar 

  • Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P (1977) Glucose oxidation during prolonged exercise evaluated with naturally labelled 1 3C glucose. J Appl Physiol 43:258–261

    Google Scholar 

  • Poortmans JR, Delescaille-van den Bosche J, Leclercq R (1978) Lactate uptake by inactive forearm during progressive leg exercise. J Appl Physiol 45:835–841

    Google Scholar 

  • Pugh LGCE (1970) Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol (Lond) 207:823–835

    Google Scholar 

  • Pugh LGCE (1971) The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol (Lond) 213:255–276

    Google Scholar 

  • Pugh LGCE (1974) The relation of oxygen intake and speed in competition cycling and comparative observations on the bicycle ergometer. J Physiol (Lond) 241:795–808

    Google Scholar 

  • Rall JA, Homsher E, Wallner A, Mommaerts WFHM (1976) A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscle. J Gen Physiol 68:13–27

    Google Scholar 

  • Rämmel G, Ström G (1949) The rate of lactate utilization in man during work and at rest. Acta Physiol Scand 17:452–456

    Google Scholar 

  • Ranvier L (1873) Propriété et structure différentes des muscles rouges et des muscles blancs chez les lapins et chez les raies. CR Acad Sci (D) (Paris) 77:1030–1034

    Google Scholar 

  • Ravussin E, Pahud P, Dörner A, Arnaud M, Jéquier E (1979) Substrate utilization during prolonged exercise preceded by ingestion of 13C-glucose in glycogen depleted and control subjects. Pfluegers Arch 383:197–202

    Google Scholar 

  • Raynaud J, Durand J (to be published) Oxygen deficit and debt in submaximal exercise at sea level and high altitude. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)

    Google Scholar 

  • Raynaud J, Martineaud JP, Bordachar J, Tillous MC, Durand J (1974) Oxygen deficit and debt in submaximal exercise at sea level and high altitude. J Appl Physiol 37:43–48

    Google Scholar 

  • Rennie DW (1978) Exercise physiology. In: Jamison PL, Zegura SL, Milan FA (eds) Eskimos of Northwestern Alaska: A biological perspective. Dowden, Hutchinson & Ross, Stroudsburg, pp 198–216

    Google Scholar 

  • Rennie DW, di Prampero P, Fitts RW, Sinclair L (1970) Physical fitness and respiratory function of Eskimos of Wainwright Alaska. Arctic Anthropol 2:73–82

    Google Scholar 

  • Roberts AD, Morton AR (1978) Total and alactic oxygen debts after supramaximal work. Eur J Appl Physiol 38:281–289

    Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 10:251–323

    Google Scholar 

  • Robinson S, Dill DB, Robinson RD, Tzankoff SP, Wagner JA (1976) Physiological aging of champion runners. J Appl Physiol 41:46–51

    Google Scholar 

  • Rode A, Shephard RJ (1971) Cardio respiratory fitness of an artic community. J Appl Physiol 31:519–526

    Google Scholar 

  • Roos A (1975) Intracellular pH and distribution of week acids across cell membranes. A study of D-and L-lactate and of DMO in rat diaphrgam. J Physiol (Lond) 249:1–25

    Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    Google Scholar 

  • Rowell LB, Kraning II KK, Evans TO, Kennedy JW, Blackmon JR, Kusmi F (1966) Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J Appl Physiol 21:1773–1783

    Google Scholar 

  • Royce J (1962) Oxygen consumption during submaximal exercises of equal intensity and different duration. Int Z Angew Physiol 19:218–221

    Google Scholar 

  • Rubner M (1894) Die Quelle der tierischen Wärme. Z Biol 30:73–142

    Google Scholar 

  • Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand (Suppl) 455:1–56

    Google Scholar 

  • Sahlin K, Palmskog G, Hultman E (1978) Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pfluegers Arch 374:193–198

    Google Scholar 

  • Saiki H, Margaria R, Cuttica F (1967) Lactic acid production in submaximal work. Arbeitsphysiologie 24:57–61

    Google Scholar 

  • Saks VA, Lipina NV, Smirnov VN, Chasov EI (1976) Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence. Arch Biochem Biophys 173:34–41

    Google Scholar 

  • Saltin B (1973) Oxygen transport by the circulatory system during exercise in man. In: Keul J (ed) Limiting factors of physical performance. Thieme, Stuttgart, pp 235–252

    Google Scholar 

  • Saltin B, Åstrand PO (1967) Maximal oxygen uptake in athletes. J Appl Physiol 23: 353–358

    Google Scholar 

  • Saltin B, Essén B (1971) Muscle glycogen lactate, ATP and CP in intermittant exercise. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 419–424

    Google Scholar 

  • Saltin B, Karlsson J (1971) Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 289–300

    Google Scholar 

  • Saltin B, Blomqvist CG, Mitchell RC, Johnson RL, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation (Suppl 7) 38:1–78

    Google Scholar 

  • Saltin B, Henriksson J, Nygaard E, Andersen P (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. N Y Acad Sci 301:3–29

    Google Scholar 

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251

    Google Scholar 

  • Seabury JJ, Adams WC, Ramey MR (1977) Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics 20:491–498

    Google Scholar 

  • Segal SS, Brooks GA (1979) Effects of glycogen depletion and work load on post-exercise O2 consumption and blood lactate. J Appl Physiol 47:514–521

    Google Scholar 

  • Shephard RJ (1976) Cardio-respiratory fitness. A new look at maximum oxygen intake. In: Jokl E, Anaud RL, Stoboy H (eds) Advances in exercise physiology. Karger, Basel (Medicine and sport, vol 9, pp 61–84)

    Google Scholar 

  • Shephard RJ, Allen C, Bar-Or O, Davies CTM, Degre S, Hedman R, Ishii K, Kaneko M, La-Cour JR, di Prampero PE, Seliger V (1969) The working capacity of Toronto school children. Part I. Can Med Assoc J 100:560–566

    Google Scholar 

  • Sidney KH, Shephard RJ (1977) Maximum and submaximum exercise tests in men and women in the seventh, eighth and ninth decades of life. J Appl Physiol 43:280–287

    Google Scholar 

  • Spitzer JJ (1974) Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol 226:213–217

    Google Scholar 

  • Spitzer JJ, Gold M (1964) The fatty acid metabolism by skeletal muscle. Am J Physiol 206:159–163

    Google Scholar 

  • Stegemann J, Kenner T (1971) A theory on heart rate control by muscular metabolic receptors. Arch Kreislaufforsch 64:185–214

    Google Scholar 

  • Steplock DA, Veicsteinas A, Mariani M (1971) Maximal aerobic and anaerobic power and stroke volume of the heart in a subalpine population. Int Z Angew Physiol 29:203–214

    Google Scholar 

  • Strømme SB, Ingier F, Meen HD (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42:833–837

    Google Scholar 

  • Thys H, Faraggiana T, Margaria R (1972) Utilisation of muscle elasticity in exercise. J Appl Physiol 32:491–494

    Google Scholar 

  • Thys H, Cavagna GA, Margaria R (1975) The role played by elasticity in an exercise involving movements of small amplitude. Pfluegers Arch 354:281–296

    Google Scholar 

  • Tzankoff SP, Norris AH (1979) Age related differences in lactate distribution kinetics following maximal exercise. Eur J Appl Physiol 42:35–40

    Google Scholar 

  • Wahren J (1977) Glucose turnover during exercise in man. Ann N Y Acad Sci 301:45–55

    Google Scholar 

  • Wahren J, Felig P, Ahlborg G, Jorfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50:2715–2725

    Google Scholar 

  • Walsh TH, Woledge RC (1970) Heat production and chemical changes in tortoise muscle. J Physiol (Lond) 206:457–469

    Google Scholar 

  • Wasserman K, van Kessel AL, Burton GG (1967) Interaction of physiologcial mechanisms during exercise. J Appl Physiol 22:71–85

    Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    Google Scholar 

  • Weber G, Kartodiharjo W, Klissouras V (1976) Growth and physical training reference to heredity. J Appl Physiol 40:211–215

    Google Scholar 

  • Whipp BJ (1971) Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol 30:261–263

    Google Scholar 

  • Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26:644–649

    Google Scholar 

  • Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant load work. J Appl Physiol 33:351–356

    Google Scholar 

  • Whipp BJ, Seard C, Wasserman K (1970) Oxygen deficit-oxygen debt relationships and efficiency of anaerobic work. J Appl Physiol 28:452–456

    Google Scholar 

  • Whipp BJ, Mahler M (1980) Dynamics of pulmonary gas exchange during exercise. In: West J (ed) Pulmonary gas exchange, vol II, pp 33–96.

    Google Scholar 

  • Wilkie DR (1960) Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Biophys Chem 10:260–298

    Google Scholar 

  • Wilkie DR (1967) Energetic aspects of muscular contraction. Symp Biol Hung 8:207–224

    Google Scholar 

  • Wilkie DR (1968) Heat work and phosphorylcreatine breakdown in muscle. J Physiol (Lond) 195:157–183

    Google Scholar 

  • Wilkie DR (1974) The efficiency of muscular contraction. J Mechanochem Cell Motility 2:257–267

    Google Scholar 

  • Withers RT, McFarland K, Cousins L, Gore S (1979) The measurement of maximum anaerobic alactacid power in males and females. Ergonomics 22:1021–1028

    Google Scholar 

  • Woledge RC (1971) Heat production and chemical change in muscle. In: Butler JAV, Noble D (eds) Progress in Biophysics and molecular biology, vol 22. Pergamon Press, Oxford New York, pp 37–74

    Google Scholar 

  • Woodson RD, Willis RE, Lenfant C (1978) Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol 44:36–43

    Google Scholar 

  • Wyndham CH (1973) The physiology of exercise under heat stress. Annu Rev Physiol 35:193–220

    Google Scholar 

  • Wyndham CH, Strydom NB, Morrison JF, Peter J, Williams CG, Bredell GAG, Joffe A (1963) Differences between ethnic groups in physical working capacity. J Appl Physiol 18:361–366

    Google Scholar 

  • Wyndham CH, Strydom NB, Rensburg AG von, Rogers GC (1970) Effects on maximal oxygen intake of acute changes in altitude in a deep mine. J Appl Physiol 29:552–555

    Google Scholar 

  • Zacks RM (1973) The mechanical efficiencies of running and bicycling against a horizontal impeding force. Int Z Angew Physiol 31:249–258

    Google Scholar 

  • Zuntz N (1901) Über die Bedeutung der verschiedenen Nährstoffe als Erzeuger der Muskelkraft. Pfluegers Arch Gesamt Physiol 83:557–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Di Prampero, P.E. (1981). Energetics of muscular exercise. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 89. Reviews of Physiology, Biochemistry and Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035266

Download citation

  • DOI: https://doi.org/10.1007/BFb0035266

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10495-7

  • Online ISBN: 978-3-540-38500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics