Skip to main content

Muscle relaxation and sarcoplasmic reticulum function in different muscle types

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 122

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson JJ, Shamoo AE (1978) Purification and characterization of the 45 000-dalton fragment from tryptic digestion of Ca Mg adenosine triphosphatase from sarcoplasmic reticulum. J. Membr Biol 44:233–257

    CAS  Google Scholar 

  • Acker MA, Stephenson LW (1987) Skeletal muscle: a potential power source for cardiac assist devices. NIPS 2:223–226

    Google Scholar 

  • Adams BA, Beam KG (1990) Muscular dysgenesis in mice — a model system for studying excitation-contraction coupling. FASEB J 4:2809–2816

    CAS  PubMed  Google Scholar 

  • Adams BA, Tanabe T, Mikami A, Numa S, Beam KG (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346:569–572

    CAS  PubMed  Google Scholar 

  • Airey JA, Beck CF, Murakami K, Tanksley SJ, Deerinck TJ, Ellisman MH, Sutko JL (1990) Identification and localization of two triad junctional foot protein isoforms in mature avian fast-twitch skeletal muscle. J Biol Chem 265:14187–14194

    CAS  PubMed  Google Scholar 

  • Airey JA, Baring MND, Sutko JL (1991) Ryanodine receptor protein is expressed during differentiation in the muscle cell lines BC3H1 and C2c12. Dev Biol 148:365–374

    CAS  PubMed  Google Scholar 

  • Ancos JG, Inesi G (1988) Patterns of proteolytic cleavage and carbodiimide derivation in sarcoplasmic reticulum adenosine triphosphatase. Biochemistry 27:1793–1803

    PubMed  Google Scholar 

  • Andersen JP, Moller JV (1977) Reaction of sarcoplasmic reticulum Ca-ATPase in different functional states with 5,5,-dithiobis-2-nitrobenzoate. Biochim Biophys Acta 485:188–202

    CAS  PubMed  Google Scholar 

  • Andersen JP, Vilsen B, Collins JH, Jorgensen PJ (1986) Localization of the E1-E2 conformational transitions of sarcoplasmic reticulum Ca-ATPase by tryptic cleavage and hydrophobic labeling. J Membr Biol 93:85–92

    CAS  PubMed  Google Scholar 

  • Andersen JP (1989) Monomer-oligomer equilibrium of sarcoplasmic reticulum calcium ATPase and the role of subunit interactions in the calcium pump mechanism. Biochim Biophys Acta 988:47–76

    CAS  PubMed  Google Scholar 

  • Andersen JP, Vilsen B, Leberer E, MacLennan DH (1989) Functional consequences of mutations in the beta strand sector of the calcium ATPase of sarcoplasmic reticulum. J Biol Chem 264:21018–21023

    CAS  PubMed  Google Scholar 

  • Arahata K, Ishiura S, Ishiguro T, Tsukahara T, Suhara Y, Eguchi C, Ishiara T, Nonaka I, Ozawa E, Sugita H (1988) Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature 333:861–866

    CAS  PubMed  Google Scholar 

  • Arrondo JLR, Mantsch HM, Mullner N, Pikula S, Martonosi A (1987) Infrared spectroscopic characterization of the structural changes connected with the E1-E2 transition in the calcium ATPase of sarcoplasmic reticulum. J Biol Chem 262:9037–9043

    CAS  PubMed  Google Scholar 

  • Ashley CC, Moisescu DG (1972) Model for the action of calcium in muscle. Nature New Biol 237:208–211

    CAS  PubMed  Google Scholar 

  • Ashley CC, Ridgway EB (1970) On the relationships between membrane potential, calcium transients and tension in single barnacle muscle fibers. J Physiol 209:105–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahler AS (1971) Mechanical properties of relaxing frog skeletal muscle. Am J Physiol 220:1983–1990

    CAS  PubMed  Google Scholar 

  • Bär A, Pette D (1988) Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Letters 235:153–155

    PubMed  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with the speed of muscle shortening. J Gen Physiol 50:197–218

    PubMed  PubMed Central  Google Scholar 

  • Bárány M, Bárány K, Reckard T, Volpe A (1965) Myosin in fast and slow muscles of the rabbit. Arch Biochem Biophys 109:185–191

    PubMed  Google Scholar 

  • Barnard RJ, Edgerton VR, Furukawa T, Peter JB (1971) Histochemical and contractile properties of red, white and intermediate fibers. Am J Physiol 220:410–414

    CAS  PubMed  Google Scholar 

  • Barth A, Kreutz W, Mantele W (19910 Infrared spectroscopy detection of conformational changes in the catalytic cycle of sarcoplasmic reticulum ATPase. Biophys J 59:339a

    Google Scholar 

  • Beekman RE, van Hardeveld C, Simonides WS (1989) On the mechanism of the reduction by thyroid hormone of beta adrenergic relaxation rate stimulation in rat heart. Biochem J 259:229–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bendall JR (1952) Effect of the Marsh factor on the shortening of muscle fiber models in the presence of adenosine triphosphate. Nature 170:1058–1060

    CAS  PubMed  Google Scholar 

  • Bendall JR (1953) Further observations on a factor, the Marsh factor, effecting relaxation of ATP-shortened muscle fiber models and the effect of Ca and Mg ions upon it, J Physiol 121:232–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beringer T (1976) A freeze-fracture study of sarcoplasmic reticulum from fast and slow muscle of the mouse. Anat Rec 184:647–664

    CAS  PubMed  Google Scholar 

  • Bertorini TE, Bhattacharya SK, Palmieri GMA, Chesney CM, Pifer D, Baker B (1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32:1088–1092

    CAS  PubMed  Google Scholar 

  • Bianchi CP, Narayan S (1982a) Muscle fatigue and the role of transverse tubules. Science 215:295–296

    CAS  PubMed  Google Scholar 

  • Bianchi CP, Narayan S (1982b) Possible role of transverse tubules in accumulating calcium released from the terminal cisternae by stimulation and drugs, Can J Physiol Pharmacol 60:503–507

    CAS  PubMed  Google Scholar 

  • Blaustein MP (1984) The energetics and kinetics of sodium-calcium exchange in barnacle muscles, squid axons and mammalian heart; the role of ATP. In: Blaustein MP, Liebermann M (eds) Electrogenic transport, fundamental principles and physiological implications. Raven, New York, pp 129–147

    Google Scholar 

  • Blinks JR, Rudel R, Taylor SR (1978) Calcium transients in isolated amphibian skeletal muscle fibers; detection with aequorin. J Physiol 277:291–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    CAS  PubMed  Google Scholar 

  • Blum HE, Lehky P, Kohler L, Stein EA, Fischer EH (1977) Comparative properties of vertebrate parvalbumins. J Biol Chem 252:2834–2838

    CAS  PubMed  Google Scholar 

  • Boland RA, Martonosi A, Tillack W (1974) Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem 249:612–623

    CAS  PubMed  Google Scholar 

  • Bond M, Shuman H, Somlyo AP, Somlyo AV (1984) Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle. J Physiol 357:185–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet JP, Galante PM, Brethes D, Dedieu JC, Chevallier J (1978) Purification of sarcoplasmic reticulum vesicles through their loading with calcium phosphate. Arch Biochem Biophys 191:32–41

    CAS  PubMed  Google Scholar 

  • Borsotto M, Barhanin J, Fosset M, Lazdunski M (1985) The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent calcium channel. J Biol Chem 260:14255–14263

    CAS  PubMed  Google Scholar 

  • Bowman WC, Raper C (1967) Adrenotropic receptor in skeletal muscle. Ann NY Acad Sci 139:741–753

    CAS  PubMed  Google Scholar 

  • Bowman WC, Zairis E (1958) The effects of adrenaline, noradrenaline and isoprenaline on skeletal muscle contraction in the cat. J Physiol 144:92–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl CJ, Green NM, Korczak B, MacLennan DH (1986) Two Ca-ATPase genes — homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607

    CAS  PubMed  Google Scholar 

  • Brandl CJ, deLeon S, Martin DR, MacLennan DH (1987) Adult forms of the Ca-ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262:3768–3774

    CAS  PubMed  Google Scholar 

  • Bray DF, Ryans DG (1976) A comparative freeze-etch study of the sarcoplasmic reticulum of avian fast and slow muscle fibers. J Ultrastruct Res 57:251–259

    CAS  PubMed  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filaments in vertebrate skeletal muscle. Nature 238:97–101

    CAS  Google Scholar 

  • Bremel RD, Weber A (1975) Calcium binding to rabbit skeletal myosin under physiological conditions. Biochim Biophys Acta 376:366–374

    CAS  PubMed  Google Scholar 

  • Briggs FN, Poland JL, Solaro RJ (1979) Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J Physiol 266:587–594

    Google Scholar 

  • Briggs FN, Lee KF, Feher JJ, Wechsler AS, Ohlendieck K, Campbell K (1990) Ca-ATPase isoenzyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett 259:269–272

    CAS  PubMed  Google Scholar 

  • Briggs MM, Schachat F (1989) N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J Mol Biol 206:245–249

    CAS  PubMed  Google Scholar 

  • Brody IA (1969) Muscle contracture induced by exercise. A syndrome attributed to decreased relaxing factor. N Engl J Med 281:187–192

    CAS  PubMed  Google Scholar 

  • Brody IA (1976) Regulation of isometric contraction in skeletal muscle. Exp Neurol 50:673–683

    CAS  PubMed  Google Scholar 

  • Brown GL, von Euler US (1938) The after-effects of a tetanus on mammalian muscle. J Physiol 93:39–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MD, Cotter MA, Hudlicka O, Vrbova G (1976) The effects of different patterns of muscle activity on capillary density mechanical properties and structure of slow and fast muscles. Pflugers Arch 361:241–250

    CAS  PubMed  Google Scholar 

  • Brunschwig JP, Brandt N, Caswell AH, Lukeman DS (1982) Ultrastructural observations of isolated intact and fragmented junction of skeletal muscle by use of tannic acid mordanting. J Cell Biol 93:533–542

    CAS  PubMed  Google Scholar 

  • Brutsaert DL, Claes VA, DeClerck NM (1978a) Relaxation of mammalian single cardiac cells after pretreatment with the detergent Brij-58. J Physiol 283:481–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brutsaert DL, DeClerck NM, Goethals MA, Housmans PR (1978b) Relaxation of ventricular cardiac muscle. J Physiol 283:469–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brutsaert DL, Sys Su (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228–1315

    CAS  PubMed  Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    CAS  PubMed  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Differentiation of fast and slow muscles in the cat hindlimb. J Physiol 150:399–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burk SE, Lytton J, MacLennan DH, Shull GE (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca-pump. J Biol Chem 264:18561–18568

    CAS  PubMed  Google Scholar 

  • Burke RE, Rudomin P, Zajac FE (1970) Catch property in single mammalian motor units. Science 168:122–124

    CAS  PubMed  Google Scholar 

  • Burke RE, Levine DN, Zajac FE Tsairis P, Engel WK (1971) Mammalian motor units: physiological-histochemical correlations in three types in cat gastrocnemius. Science 174:709–712

    CAS  PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bygrave FL, Trantner CJ (1978) The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium ion transport in rat liver. Biochem J 174:1021–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd SK, McCutchen LJ, Hodgson DR, Gollnick PD (1989a) Altered sarcoplasmic reticulum function after high-intensity exercise. J Appl Physiol 67:2072–2077

    CAS  PubMed  Google Scholar 

  • Byrd SK, Bode AK, Klug GA (1989b) Effects of exercise of varying duration on sarcoplasmic reticulum function. J Appl Physiol 66:1383–1389

    CAS  PubMed  Google Scholar 

  • Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262

    CAS  PubMed  Google Scholar 

  • Campbell KP, MacLennan DH (1981) Purification and characterization of the 53 000-dalton glycoprotein from the sarcoplasmic reticulum. J Biol Chem 256:4626–4632

    CAS  PubMed  Google Scholar 

  • Campbell KP, Maclennan DH, Jorgensen AO, Mintzer MC (1983) Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and the identification of the 53kD glycoprotein. J Biol Chem 258:1197–1204

    CAS  PubMed  Google Scholar 

  • Campbell AM, Kessler PD, Sagara Y, Inesi G, Fambrough DM (1991) Nucleotide sequences of avian cardiac and brain SR/ER Ca-ATPases and functional comparisons with fast-twitch Ca-ATPase. J Biol Chem 266:16050–16055

    CAS  PubMed  Google Scholar 

  • Carafoli E (1982) Membrane transport and the regulation of the cell calcium levels In Cowley RA, Trump BH (eds) Pathophysiology of shock anoxia and ischaemia Williams and Wilkins, Baltimore, pp 95–112

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    CAS  PubMed  Google Scholar 

  • Carafoli E (1991) Calcium pumps of the plasma membrane. Physiol Rev 71:129–154

    CAS  PubMed  Google Scholar 

  • Caroni P, Carafoli E (1980) An ATP-dependent calcium pumping system in dog heart sarcolemma. Nature 283:765–767

    CAS  PubMed  Google Scholar 

  • Caroni P, Carafoli E (1981) The calcium-pumping ATPase of heart sarcolemma. J Biol Chem 256:3263–3270

    CAS  PubMed  Google Scholar 

  • Caroni P, Carafoli E (1983) The regulation of the Na-Ca exchanger of heart sarcolemma. Eur J Biochem 132:451–460

    CAS  PubMed  Google Scholar 

  • Caroni P, Zurini M, Clark A, Carafoli E (1983) Further characterization and reconstitution of the purified Ca-ATPase from heart sarcolemma. J Biol Chem 258:7305–7310

    CAS  PubMed  Google Scholar 

  • Castellani L, Hardwicke PMD, Vibert P (1985) Dimer ribbons in the three-dimensional structure of sarcoplasmic reticulum. J Mol Biol 185:579–594

    CAS  PubMed  Google Scholar 

  • Catterall WA (1991) Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels. Cell 64:871–874

    CAS  PubMed  Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast-contracting muscle fibers. Nature 297:504–506

    CAS  PubMed  Google Scholar 

  • Chachques JC, Grandjean P, Schwartz K, Miahileanu S, Fardeau M, Swynghedauw B, Fontaliran F, Romero N, Wisnewsky C, Perier P, Chauvaud S, Bourgeois I, Carpentier A (1988) Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function. Circulation 78:III 203–III 216

    CAS  Google Scholar 

  • Champeil P, Riollet S, Orlowski S, Guillain F, Seebergst CJ, McIntosh DB (1988) ATP regulation of SR Ca-ATPase, metal-free ATP and 8-bromo ATP binding with high affinity to the catalytic site of phosphorylated ATPase and accelerated dephosphorylation. J Biol Chem 263:12288–12294

    CAS  PubMed  Google Scholar 

  • Chiesi M, Schwaller R (1989) Involvement of electrostatic phenomena in phospholamban induced stimulation of Ca uptake into cardiac sarcoplasmic reticulum. FEBS Lett 244:241–244

    CAS  PubMed  Google Scholar 

  • Chiesi M, Vorherr T, Falchetto R, Waelchli C, Carafoli E (1991) Phospholamban is related to the autoinhibitory domain of the plasma membrane Ca-pumping ATPase. Biochemistry 30:7978–7983

    CAS  PubMed  Google Scholar 

  • Chizzonite RA, Zak R (1984) Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem 259:12628–12632

    CAS  PubMed  Google Scholar 

  • Chua M, Dulhunty A (1987) Diazepam reveals different rate-limiting processes in rat skeletal muscle contraction. Can J Physiol Pharmacol 65:272–273

    CAS  PubMed  Google Scholar 

  • Chua M, Dulhunty A (1988) Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles. J Gen Physiol 91 737–757

    CAS  PubMed  Google Scholar 

  • Clarke DM, Maruyama K, Loo TW, Leberer E, Inesi G, MacLennan DH (1989a) Functional consequences of glutamate, aspartate, glutamine and asparagine mutations in the stalk sector of the calcium-ATPase of sarcoplasmic reticulum. J Biol Chem 264:11246–11251

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, Inesi G, MacLennan DH (1989b) Localization of high-affinity calcium-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca-ATPase. Nature 339:476–478

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, MacLennan DH (1990a) The epitope for monoclonal antibody A20 amino acids 870–890 is located on the luminal surface of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 265:17405–17408

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, MacLennan DH (1990b) Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 265:22223–22227

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, MacLennan DH (1990c) Functional consequences of mutations of conserved amino acids in the beta strand domain of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 265:14088–14092

    CAS  PubMed  Google Scholar 

  • Close RI (1967) Properties of motor units in fast and slow skeletal muscle of the rat. J Physiol 193:45–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Close RI, Hoh JFY (1968) The after-effects of repetitive stimulation on the isometric twitch contraction of rat fast skeletal muscle. J Physiol 197:461–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbold PH, Rink TJ (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 248:313–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colyer J, Wang JH (1991) Dependence of the cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem 266:17486–17493

    CAS  PubMed  Google Scholar 

  • Cooper S, Eccles JC (1930) The isometric responses of mammalian muscles. J Physiol 69:377–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossins AR, Christiansen J, Prosser CL (1978) Adaptation of biological membranes to temperature; the lack of homoviscous adaptation in the sarcoplasmic reticulum. Biochim Biophys Acta 511:442–454

    CAS  PubMed  Google Scholar 

  • Coulton GR, Curtin NA, Morgan JE, Partridge TA (1988) The mdx mouse skeletal muscle myopathy. II. Contractile properties. Neuropathol Appl Neurobiol 14:299–314

    CAS  PubMed  Google Scholar 

  • Crompton M, Siegel E, Salzmann M, Carafoli (1976) A kinetic study of the energy-linked influx of Ca into heart mitochondria. Eur J Biochem 69:429–434

    CAS  Google Scholar 

  • Csermely P, Katopis C, Papp S, Wallace B, Martonosi A (1986) The E1–E2 transition of Ca-ATPase in sarcoplasmic reticulum occurs without major net changes in secondary structure. Biophys J 49:562a

    Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from transverse tubule. Biochemistry 23:2113–2118

    CAS  PubMed  Google Scholar 

  • Damiani E, Betto R, Salvatori S, Vople P, Salviati G, Margreth A (1981) Polymorphism of sarcoplasmic reticulum adenosine triphosphatase of rabbit skeletal muscle. Biochem J 197:245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damiani E, Salvatori S, Zorzato F, Margreth A (1986) Characteristics of skeletal muscle calsequestrin. Comparison with mammalian, amphibian and avian muscles. J Muscle Res Cell Motil 7:435–445

    CAS  PubMed  Google Scholar 

  • Dangain J, Vrbova G (1988) Response of dystrophic muscle to reduced load. J Neurol Sci 88:277–285

    CAS  PubMed  Google Scholar 

  • Danon MJ, Karpati G, Charuk J, Holland P (1988) Sarcoplasmic reticulum adenosine triphosphatase deficiency with probable autosomal dominant inheritance. Neurology 38:812–815

    CAS  PubMed  Google Scholar 

  • Davidson GA, Berman MC (1987) Phosphoenzyme conformational states and nucleotide-binding site hydrophobicity following thiol modification of the Ca-ATPase of sarcoplasmic reticulum from skeletal muscle. J Biol Chem 262:7041–7046

    CAS  PubMed  Google Scholar 

  • Davies K (1990) Malignant hyperthermia may be due to a defect in a large Ca-release channel protein. TIG 6:171–172

    CAS  PubMed  Google Scholar 

  • Dawson RM, Hauser H (1970) Binding of calcium to phospholipids In Cuthbert W (ed) Calcium and cell function, University Press, Cambridge, pp 17–41

    Google Scholar 

  • Dawson MJ, Gadian DG, Wilkie DR (1980) Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorous nuclear magnetic resonance. J Physiol 299:465–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Declerc JP, Tinant B, Parello J, Etienne G, Huber R (1988) Crystal structure determination and refinement of pike 4.10 parvalbumin, minor component of Esox lucius. J Mol Biol 202:349–353

    Google Scholar 

  • Degani C, Boyer PD (1973) A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 248:8222–8226

    CAS  PubMed  Google Scholar 

  • DeLuca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47:1744–1750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Pozo EC (1942) Transmission fatigue and contraction fatigue. Am J Physiol 135:763–771

    Google Scholar 

  • DeMeis L, DeMello MCF (1979) Substrate regulation of membrane phosphorylation and of Ca transport in the sarcoplasmic reticulum. J Biol Chem 248:3691–3701

    Google Scholar 

  • DeMeis L, Hasselbach W (1971) Acetyl phosphate as substrate for calcium uptake in skeletal muscle microsomes:inhibition by alkali ions. J Biol Chem 246:4759–4763

    CAS  Google Scholar 

  • DeMeis L, Vianna AL (1979) Energy interconversion by the Ca-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292

    CAS  Google Scholar 

  • Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubowitz V, Brooke MH (1973) Muscle biopsy, a modern approach. Saunders, Philadelphia

    Google Scholar 

  • Dubowitz V, Pearse AGE (1960) A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie 2:105–117

    CAS  PubMed  Google Scholar 

  • Dulhunty AF (1990) The rate of tetanic relaxation is correlated with the density of calcium-ATPase in the terminal cisternae of thyrotoxic skeletal muscle. Pflugers Arch 415:433–439

    CAS  PubMed  Google Scholar 

  • Dux E, Tóth I, Dux L, Joó F (1978) The localization of calcium by X-ray microanalysis in myopathic muscle fibers. Histochemistry 56:239–244

    CAS  PubMed  Google Scholar 

  • Dux L (1985) Membrane crystals of Ca-ATPase in developing muscles. FEBS Lett 183:177–181

    CAS  PubMed  Google Scholar 

  • Dux L, Martonosi A (1983a) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified calcium-ATPase vesicles treated with vanadate. J Biol Chem 258:2599–2603

    CAS  PubMed  Google Scholar 

  • Dux L, Martonosi A (1983b) Ca-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion. J Biol Chem 258:10111–10115

    CAS  PubMed  Google Scholar 

  • Dux L, Martonosi A (1983c) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membranes I. The effects of Ca, ATP and inorganic phosphate. J Biol Chem 258:11896–11902

    CAS  PubMed  Google Scholar 

  • Dux L, Martonosi A (1983d) Membrane crystals of Ca-ATPase in sarcoplasmic reticulum of normal and dystrophic muscle. Muscle Nerve 6:566–573

    CAS  PubMed  Google Scholar 

  • Dux L, Martonosi A (1984) Membrane crystals of sarcoplasmic reticulum Ca-ATPase in fast, slow and cardiac muscles. Eur J Biochem 141:43–49

    CAS  PubMed  Google Scholar 

  • Dux L, Pette D (1990) Conformational states of the sarcoplasmic reticulum Ca-ATPase in normal and transforming rabbit fast-twitch muscles. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter Berlin, New York, pp 509–520

    Google Scholar 

  • Dux L, Taylor K, Ting-Beall HP, Martonosi A (1985a) Crystallization of the Ca-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J Biol Chem 260:11730–11743

    CAS  PubMed  Google Scholar 

  • Dux L, Papp S, Martonosi A (1985b) Conformational responses of the tryptic cleavage products of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 260:13454–13458

    CAS  PubMed  Google Scholar 

  • Dux L, Pikula S, Mullner N, Martonosi A (1987) Crystallization of Ca-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem 262:6439–6442

    CAS  PubMed  Google Scholar 

  • Dux L, Lelkes G, Hieu HL, Nemcsok J (1989) Structural differences between the Ca-ATPase of sarcoplasmic reticulum membrane from rabbit and carp muscles. Comp Biochem Physiol 92b 263–270

    CAS  Google Scholar 

  • Dux L, Green HJ, Pette D (1990) Chronic low-frequency stimulation of rabbit fast-twitch muscle induces partial inactivation of the sarcoplasmic reticulum Ca-ATPase and changes its tryptic cleavage. Eur J Biochem 192:95–100

    CAS  PubMed  Google Scholar 

  • Ebashi S (1960) Calcium binding and relaxation in the actomyosin system. J Biochem 48:150–151

    CAS  Google Scholar 

  • Ebashi S (1961) Calcium binding activity of vesicular relaxing factor. J Biochem 50:236–244

    CAS  Google Scholar 

  • Ebashi S (1963) Third component participating in the superprecipitation of natural actomyosin. Nature 200:1010

    CAS  PubMed  Google Scholar 

  • Ebashi S (1991) Excitation-contraction coupling and the mechanism of muscle contraction. Annu Rev Physiol 53:1–16

    CAS  PubMed  Google Scholar 

  • Ebashi S, Lipmann F (1962) Adenosine triphosphatase-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edman KAP, Flitney FW (1982) Laser diffraction studies of sarcomere dynamics during isometric relaxation in isolated muscle fibers of the frog. J Physiol 329:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards RHT, Hill DK, Jones DA (1975) Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol 251:287–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eerbeck O, Kernell D, Verhey BA (1984) Effects of fast and slow patterns of tonic long-term stimulation on contractile properties of fast muscle in the cat. J Physiol 352:73–90

    Google Scholar 

  • Eisenberg BR, Kuda AM (1975) Stereological analysis of mammalian skeletal muscles II. White vastus muscle of the adult guinea pig. J Ultrastruct Res 51:176–187

    CAS  PubMed  Google Scholar 

  • Eisenberg BR, Kuda AM (1976) Discrimination between fiber populations in mammalian skeletal muscle by using ultrastructural parameters. J Ultrastruct Res 54:76–88

    CAS  PubMed  Google Scholar 

  • Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology, sect 10: skeletal muscle. Williams and Wilkins, Baltimore, pp 73–112

    Google Scholar 

  • Eisenberg BR, Eisenberg RS (1982) The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol 79:1–19

    CAS  PubMed  Google Scholar 

  • Eisenberg BR, Dix DG, Lin ZW, Wenderoth MP (1987) Relationship of membrane systems in muscle to isomyosin contents. Can J Physiol Pharmacol 65:598–605

    CAS  PubMed  Google Scholar 

  • Engelhardt VA (1946) Adenosine triphosphatase activity of myosin. Adv Enzymol 6:187–192

    Google Scholar 

  • Endo M (1972) Stretch-induced increase in activation of skinned muscle fiber by calcium. Nature New Biol 237:211–213

    CAS  PubMed  Google Scholar 

  • Enyedi A, Vorherr T, James P, McCormick DJ, Filoteo AG, Carafoli E, Penniston JT (1989) The calmodulin-binding domain of the PM Ca-pump interacts both with calmodulin and with another part of the pump. J Biol Chem 264:12313–12321

    CAS  PubMed  Google Scholar 

  • Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophic complex in dystrophic muscle. Nature 345:315–319

    CAS  PubMed  Google Scholar 

  • Eusebi F, Miledi R, Takahashi T (1980) Calcium transients in mammalian muscles. Nature 284:560–561

    CAS  PubMed  Google Scholar 

  • Eusebi F, Miledi R, Takahashi T (1985) Aequorin calcium transients in mammalian fast and slow muscle fibers. Biomed Res 6:129–138

    CAS  Google Scholar 

  • Everts ME, Andersen JP, Clausen T, Hausen O (1989) Quantitative determination of Ca-dependent Mg-ATPase from sarcoplasmic reticulum in muscle biopsies. Biochem J 260:443–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everts ME (1990) Effects of thyroid hormone on Ca efflux and Ca transport capacity in rat skeletal muscle. Cell Calcium 11:343–352

    CAS  PubMed  Google Scholar 

  • Everts ME, Ording H, Hansen O, Nielsen PA (1992) Ca-ATPase and Na, K-ATPase content in skeletal muscle from malignant hyperthermia patients. Muscle Nerve 14:162–167

    Google Scholar 

  • Ezerman EB, Ishikawa H (1967) Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. J Cell Biol 35:405–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac Purkinje cells. J Gen Physiol 85:247–290

    CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1978) Myofilament-generated tension oscillation during partial activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72:667–699

    CAS  PubMed  Google Scholar 

  • Famulski KS, Pilarska M, Wrzosek A, Sarzala MG (1988) The effect of thyroxin on the calmodulin-dependent Ca-Mg-ATPase activity and protein phosphorylation in rabbit fast skeletal muscle. Eur J Biochem 171:363–368

    CAS  Google Scholar 

  • Fehér JJ, Manson NH, Poland JL (1988) The rate and capacity of calcium uptake by sarcoplasmic reticulum in fast, slow and cardiac muscle: effects of ryanodine and ruthenium red. Arch Biochem Biophys 265:171–182

    PubMed  Google Scholar 

  • Ferguson DG, Franzini-Armstrong C (1988) The Ca-ATPase content of slow and fast twitch fibers of guinea pigs. Muscle Nerve 11:561–570

    CAS  PubMed  Google Scholar 

  • Fiehn W, Peter JB (1971) Properties of the fragmented sarcoplasmic reticulum from fast and slow twitch muscles. J Clin Invest 50:570–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fink RHA, Stephenson DG, Williams DA (1990) Physiological properties of skinned fibers from normal and dystrophic Duchenne human muscles activated via Ca and Sr. J Physiol 426:337–353

    Google Scholar 

  • Fitts RH, Winder WW, Brooke MH, Kaiser KK, Holloszy JO (1980) Contractile biochemical and histochemical properties of thyrotoxic rat soleus muscle. Am J Physiol 238:C15–C20

    CAS  Google Scholar 

  • Fitts RH, Courtright JB, Kim DH, Witzmann FA (1982) Muscle fatigue with prolonged exercise: contractile and biochemical alterations. Am J Physiol 242:C65–C73

    CAS  PubMed  Google Scholar 

  • Fleischer S, Inui M (1989) Biochemistry and biophysics of excitation and contraction coupling. Annu Rev Biophys Biophys Chem 18:333–364

    CAS  PubMed  Google Scholar 

  • Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EAM (1985) Localization of calcium release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci USA 82:7256–7259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reitheimer RA, MacLennan DH (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84:1167–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fliegel L, Leberer E, Green NM, MacLennan DH (1989) The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEBS Lett 242:297–300

    CAS  PubMed  Google Scholar 

  • Florini J, Ewton DZ, Magri KA (1991) Hormones, growth factors and myogenic differentiation. Annu Rev Physiol 53:201–216

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C (1980) Structure of sarcoplasmic reticulum. Fed Proc 39:2403–2409

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Keeney LJ, Varriano-Marston E (1987) The structure of calsequestrin in trials of vertebrate skeletal muscle A deep-etch study. J Cell Biol 105:49–56

    CAS  PubMed  Google Scholar 

  • Frederiksen DW (1980) Myosin phosphorylation. Nature 287:191–192

    CAS  PubMed  Google Scholar 

  • Froelich JP, Taylor EW (1976) Transient state kinetics:effects of calcium ions on sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 251:2307–2315

    Google Scholar 

  • Fryer MW, Neering IR (1986) Relationship between intracellular calcium concentration and relaxation of rat fast and slow muscles. Neurosci Lett 64:231–235

    CAS  PubMed  Google Scholar 

  • Fulton AB, Isaacs WB (1991) a+52HTitin, a huge elastic sarcomeric protein with a probable role in morphogenesis. Bioessays 13:157–161

    CAS  PubMed  Google Scholar 

  • Gambke B, Maier A, Pette D (1985) Transformation and or replacement of fibers in chronically stimulated rabbit fast-twitch muscles. J Physiol 361:34p

    Google Scholar 

  • Garrahan PJ, Rega AF (1990) Plasma membrane calcium pump. In: Bronner F (ed) Intracellular calcium regulation. Liss, New York, pp 27–303

    Google Scholar 

  • Gauthier G, Hobbs AW (1986) Freeze-fractured sarcoplasmic reticulum in adult and embryonic fast and slow muscles. J Muscle Res Cell Motil 7:122–133

    CAS  PubMed  Google Scholar 

  • Gerday C (1982) Soluble calcium-binding proteins from fish and invertebrate muscles. Mol Physiol 2:63–87

    CAS  Google Scholar 

  • Gerok W, Heilmann C, Spamer C (1990) Regulation of intracellular calcium by endoplasmic reticulum of hepatocytes. In: Bronner F (ed) Intracellular calcium regulation. Liss, New York, pp 139–162

    Google Scholar 

  • Gillis JM (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta 811:97–145

    CAS  PubMed  Google Scholar 

  • Gillis JM, Thomason D, Lefevre J, Kretsinger RH (1982) Parvalbumins and muscle relaxation a computer simulation study. J Muscle Res Cell Motil 3:377–398

    CAS  PubMed  Google Scholar 

  • Glynn IM, Karlish SJD (1990) Occluded cations in active transport. Annu Rev Biochem 59:171–205

    CAS  PubMed  Google Scholar 

  • Gollnick PD, Korge P, Karpakka J, Saltin B (1991) Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiol Scand 142:135–136

    CAS  PubMed  Google Scholar 

  • Gonzalez-Serratos H, Somlyo AV, McClellan G, Shuman H, Borrero LM, Somlyo AP (1978) Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle electron-probe analysis. Proc Natl Acad Sci USA 75:1329–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greeb J, Shull G (1989) Molecular cloning of a third isoform of the calmodulin-sensitive PM Ca-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem 264:18569–18576

    CAS  PubMed  Google Scholar 

  • Green HJ (1990) Manifestations and sites of neuromuscular fatigue. International series on sport sciences. Biochem Exerc 21:15–34

    Google Scholar 

  • Green HJ, Klug GA, Reichmann H, Seedorf U, Wiehrer W, Pette D (1984) Exercise-induced fiber-type transitions with regard to myosin, parvalbumin and sarcoplasmic reticulum in muscles of the rat. Pflugers Arch 400:432–438

    CAS  PubMed  Google Scholar 

  • Green NM (1989) Ions gates and channels. Nature 339:424–425

    CAS  PubMed  Google Scholar 

  • Grisham CM (1983) Ion transporting ATPases. Characterising structure and function with paramagnetic probes. In: Martonosi A (ed) Membranes and Transport Vol. 1. Plenum, New York, pp 585–592

    Google Scholar 

  • Grover AK, Khan I (1992) Calcium pump isoforms: diversity, selectivity and plasticity. Cell Calcium 13:9–17

    CAS  PubMed  Google Scholar 

  • Gunning P, Hardeman E (1991) Multiple mechanisms regulate muscle fiber diversity. FASEB J 5:3064–3070

    CAS  PubMed  Google Scholar 

  • Ha DB, Boland R, Martonosi A (1979) Synthesis of the calcium transport ATPase of sarcoplasmic reticulum and other muscle proteins during development of muscle cells in vivo and in vitro. Biochim Biophys Acta 585:165–187

    CAS  PubMed  Google Scholar 

  • Härtner KT, Pette D (1990) Fast and slow isoforms of troponin I and C. Eur J Biochem 188:261–267

    PubMed  Google Scholar 

  • Haiech J, Devoncourt J, Pechere JE, Demaille JG (1979) Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry 18:2752–2758

    CAS  PubMed  Google Scholar 

  • Hamoir G (1968) The comparative biochemistry of fish sarcoplasmic proteins. Acta Zool Pathol 46:69–76

    Google Scholar 

  • Hanson J (1974) The effects of repetitive stimulation on the action potential and the twitch of rat muscle. Acta Physiol Scand 90:387–400

    CAS  PubMed  Google Scholar 

  • Hartree W, Hill AV (1921) The nature of the isometric twitch. J Physiol 55:389–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselbach W (1978) The reversibility of the sarcoplasmic reticulum calcium pump Biochim Biophys Acta 515:23–53

    CAS  PubMed  Google Scholar 

  • Hasselbach W, Elfvin LG (1967) Structural and chemical asymmetry of the calcium transporting membranes of the sarcotubular system as revealed by electron microscopy. J Ultrastruct Res 17:598–622

    CAS  PubMed  Google Scholar 

  • Hasselbach W, Makinose M (1961) Die Calciumpumpe der Erschlaffungsgrana des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem Z 333:518–528

    CAS  PubMed  Google Scholar 

  • Heegard CW, le Maire M, Gulik-Krzywicki T, Moller JV (1990) Monomeric state and Ca transport by sarcoplasmic reticulum Ca-ATPase reconstituted with an excess of phospholipids. J Biol Chem 265:12020–12028

    Google Scholar 

  • Heilmann C, Pette D (1979) Molecular transformations in sarcoplasmic reticulum of fast twitch muscle by electrostimulation. Eur J Biochem 93:437–446

    CAS  PubMed  Google Scholar 

  • Heilmann C, Brdiczka D, Nickel E, Pette D (1977) ATPase activities: Ca transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Eur J Biochem 81:143–149

    Google Scholar 

  • Heizmann CW (1984) Parvalbumin an intracellular calcium-binding protein distribution: properties and possible roles in mammalian cells. Experientia 40:910–921

    CAS  PubMed  Google Scholar 

  • Heizmann CW, Hunziker W (1990) Intracellular calcium-binding molecules. In: Bronner F (ed) Intracellular calcium regulation. Liss, New York, pp 211–248

    Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA 79:7243–7247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo C, Thomas DD (1977) Heterogeneity of SH groups in sarcoplasmic reticulum. Biochem Biophys Res Commun 78:1175–1182

    CAS  PubMed  Google Scholar 

  • Hieu HL, Nemcsok J, Molnar E, Dux L (1992) Different sensitivity of sarcoplasmic reticulum Ca-ATPase from rabbit and carp muscles to fluoresceine isothiocyanate labeling. Comp Biochem Physiol 102B:19–23

    CAS  Google Scholar 

  • Hill AV (1949) The energetics of relaxation in a muscle twitch. Proc R Soc Lond [Biol] 136:211–219

    CAS  PubMed  Google Scholar 

  • Hill DK (1972) Resting tension and the form of the twitch of rat skeletal muscle at low temperature. J Physiol 221:161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochachka PW (1990) The biochemical limits of muscle work. International series on sport sciences. Biochem Exerc 21:2–9

    Google Scholar 

  • Hoffmann EP, Brown RH, Kunkel LM (1987a) Dystrophin, the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Google Scholar 

  • Hoffmann EP, Knudson CM, Campbell KM, Kunkel LM (1987b) Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature 330:754–758

    Google Scholar 

  • Hoffmann EP, Fischbeck KH, Brown RH, Johnson M, Meodri R, Loike JD, Harris JB, Waterston R, Brooke M, Specht L, Kupsky W, Chamberlain J, Caskey CT, Shapiro F, Kunkel LM (1988) Characterization of dystrophin in muscle biopsy specimens from patients with Duchenne and Becker muscular dystrophy. N Engl J Med 318:1363–1368

    Google Scholar 

  • Hoffmann PA, Fuchs F (1987) Effect of length and cross-bridge attachment on calcium binding to cardiac troponin C. Am J Physiol 253:C90–C96

    Google Scholar 

  • Horackova M, Vassort G (1979) Sodium-calcium exchange in regulation of cardiac contractility. J Gen Physiol 73:403–424

    CAS  PubMed  Google Scholar 

  • Horowits R, Kempner E, Bisher ME, Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164

    CAS  PubMed  Google Scholar 

  • Horváth LI, Dux L, Hankovszky O, Hideg K, Marsh D (1990) Saturation transfer electron-spin resonance of Ca-ATPase covalently spin-labeled with beta-substituted vinyl ketone and maleimide-nitroxide derivatives. Biophys J 58:231–241

    PubMed  PubMed Central  Google Scholar 

  • Horváth LI, Dux L, Hideg K, Marsh D (1992) Rotational diffusion of Ca-ATPase in 2-D crystal forms. A saturation-transfer electron-spin-resonance study. Biochemistry

    Google Scholar 

  • Huang CLH (1988) Intramembrane charge movement in skeletal muscle. Physiol Rev 68:1197–1247

    CAS  PubMed  Google Scholar 

  • Huxley AF, Niedergerke R (1958) Measurement of the striation of isolated muscle fibers with the interference microscope. J Physiol 144:403–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley AF, Taylor RE (1958) Local activation of striated muscle fibers. J Physiol 144:426–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1985) The cross-bridge mechanism of muscular contraction and its implication. J Exp Biol 115:17–30

    CAS  PubMed  Google Scholar 

  • Hymel L, Schindler H, Inui M, Fleischer S (1988) Reconstitution of purified cardiac muscle calcium-release channel ryanodine receptor in planar bilayers. Biochem Biophys Res Commum 152:308–314

    CAS  Google Scholar 

  • Iaizzo PA, Poppele RE (1990) Twitch relaxation of the cat soleus muscle at different lengths and temperatures. Muscle Nerve 13:1105–1112

    CAS  PubMed  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702

    CAS  PubMed  Google Scholar 

  • Ikemoto N (1975) Transport and inhibitory calcium-binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J Biol Chem 250:7219–7224

    CAS  PubMed  Google Scholar 

  • Imamura Y, Kawakita M (1989) Purification of limited tryptic fragments of Ca-Mg adenosine triphosphatase of the sarcoplasmic reticulum and identification of the conformational-sensitive cleavage sites. J Biochem 105:775–781

    CAS  PubMed  Google Scholar 

  • Inesi G, Scales D (1974) Tryptic cleavage of the sarcoplasmic reticulum protein. Biochemistry 13:3298–3306

    CAS  PubMed  Google Scholar 

  • Inesi G, Maring E, Murphy AJ, McFarland BH (1970) A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Arch Biochem Biophys 138:285–294

    CAS  PubMed  Google Scholar 

  • Inesi G, Millman M, Eletr S (1973) Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J Mol Biol 81:483–504

    CAS  PubMed  Google Scholar 

  • Inesi G, Sumbilla C, Kirtley ME (1990) relationships of molecular structure and function in calcium transport ATPase. Physiol Rev 70:749–760

    CAS  PubMed  Google Scholar 

  • Ingjer F (1979) Effects of endurance training on muscle fiber ATPase activity, capillary supply and mitochondrial content in man. J Physiol 294:419–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987a) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with feet structures. J Biol Chem 262:15637–15642

    CAS  PubMed  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987b) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    CAS  PubMed  Google Scholar 

  • Ismail-Beigi F, Chaudhury S, Gick G, Levenson R, Edelman IS (1986) Thyroid hormone increases Na,K-ATPase alpha subunit messenger RNA levels in target tissues. Fed Proc 45:1498

    Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V (1986) All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231:597–600

    CAS  PubMed  Google Scholar 

  • Jakab Gy, Kranias EG (1988) Phosphorylation and dephosphorylation of phospholamban and associated phosphatidylinositides. Biochemistry 27:3799–3806

    CAS  PubMed  Google Scholar 

  • James P, Inui M, Tada M, Chiesi M, Carafoli E (1989) Nature and site of phospholamban regulation of the calcium pump of sarcoplasmic reticulum. Nature 342:90–92

    CAS  PubMed  Google Scholar 

  • James-Kracke MR (1986) Measurement of cytoplasmic free calcium concentration in cultured muscle cells by aequorin and quin 2. Am J Physiol 251:C512–C523

    CAS  PubMed  Google Scholar 

  • Jewell BR, Wilkie DR (1960) The mechanical properties of relaxing muscle. J Physiol 152:30–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jilka RL, Martonosi A, Tillack TW (1975) Effect of the purified Mg-Ca-activated ATPase of sarcoplasmic reticulum upon the passive Ca permeability and ultrastructure of phospholipid vesicles. J Biol Chem 250:7511–7524

    CAS  PubMed  Google Scholar 

  • Jobsis FF, OConnor MJ (1966) Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commum 25:246–252

    CAS  Google Scholar 

  • Jockusch H (1990) Muscle fiber transformation in myotonic mouse mutants. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 429–443

    Google Scholar 

  • Johnson EA, Sommer JR (1976) A strand of cardiac muscle: its ultrastructure and the electrophysiological implications of its geometry. J Cell Biol 33:103–128

    Google Scholar 

  • Jóna I, Martonosi A (1986) The effects of membrane potential and lanthanides on the conformation of the calcium transport ATPase in sarcoplasmic reticulum. Biochem J 234:363–371

    PubMed  PubMed Central  Google Scholar 

  • Jorgensen AO, Jones LR (1986) Localization of phospholamban in slow but not fast canine skeletal muscle fibers. J Biol Chem 261:3775–3781

    CAS  PubMed  Google Scholar 

  • Jorgensen AO, Shen ACY, Campbell KP, MacLennan DH (1983) Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol 19:1573–1581

    Google Scholar 

  • Jorgensen AO, Arnold W, Pepper DR, Kahl SD, Mandel F, Campbell KP (1988) A monoclonal antibody to the calcium-ATPase of cardiac sarcoplasmic reticulum cross-reacts with slow type-I but not with fast type-II canine skeletal muscle fibers an immunocytochemical and immunochemical study. Cell Motil Cytoskeleton 9:164–174

    CAS  PubMed  Google Scholar 

  • Jorgensen AO, Shen ACY, Arnold W, Leung AT, Campbell KP (1989) Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ. An immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109:135–147

    CAS  PubMed  Google Scholar 

  • Jorgensen AO, Shen ACY, Arnold W, Knudson M, Campbell KP (1992) Localization of the 94-kD junctional sarcoplasmic reticulum (SR) protein in adult and developing skeletal muscle. Biophys J 61:A422

    Google Scholar 

  • Kadoma M, Froelich J, Reeves J, Sutko J (1982) Kinetics of sodium ion-induced calcium ion release in calcium ion-loaded cardiac sarcolemmal vesicles: determination of initial velocities by stopped-flow spectrophotometry. Biochemistry 21:1914–1918

    CAS  PubMed  Google Scholar 

  • Kanazawa TS, Yamada T, Yamamoto T, Tonomura Y (1971) Reaction mechanism of the calcium-ATPase of sarcoplasmic reticulum from skeletal muscle. J Biochem 70:95–123

    CAS  PubMed  Google Scholar 

  • Karpati G, Charuk J, Carpenter S, Jablecki C, Holland P (1986) Myopathy caused by a deficiency of calcium-ATPase in sarcoplasmic reticulum: Brody's disease. Ann Neurol 20:38–49

    CAS  PubMed  Google Scholar 

  • Kaprielian Z, Fambrough DM (1987) Expression of fast and slow isoforms of the calcium-ATPase in developing chick skeletal muscle. Dev Biol 124:490–503

    CAS  PubMed  Google Scholar 

  • Kaprielian Z, Bandman E, Fambrough DM (1991) Expression of calcium-ATPase isoforms in denervated regenerating and dystrophic chicken skeletal muscle. Dev Biol 144:199–211

    CAS  PubMed  Google Scholar 

  • Katz S, Remtulla MA (1978) Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Commun 83:1373–1379

    CAS  PubMed  Google Scholar 

  • Kawakita M, Yasuoka T, Kaziro Y (1980) Selective modification of functionally distinct sulfhydril groups of sarcoplasmic reticulum Ca-Mg adenosine triphosphatase with N-ethyl maleimide. J Biochem 87:609–617

    CAS  PubMed  Google Scholar 

  • Kelly DE (1969) The fine structure of skeletal muscle triad junctions. J Ultrastruct Res 29:37–49

    CAS  PubMed  Google Scholar 

  • Kerrick WGL, Secrist D, Coby R, Lucas S (1976) Development of difference between red and white muscles in sensitivity to calcium in the rabbit from embryo to adult. Nature 260:440–441

    CAS  PubMed  Google Scholar 

  • Kielley WW, Meyerhof O (1948) Studies on ATPase of muscle. II. A new Mg-activated ATPase. J Biol Chem 501:591–601

    Google Scholar 

  • Kielley WW, Meyerhof O (1950) Studies on the ATPase of muscle. III. The lipoprotein nature of the Mg-activated ATPase. J Biol Chem 183:319–401

    Google Scholar 

  • Kijima Y, Ogunbunmi E, Fleischer S (1991) Drug action of thapsigargin on the Ca-pump protein of sarcoplasmic reticulum. J Biol Chem 266:22912–22918

    CAS  PubMed  Google Scholar 

  • Kim DH, Witzmann FA, Fitts RH (1982) Effects of disuse on sarcoplasmic reticulum in fast and slow skeletal muscle. Am J Physiol 243:C156–C160

    CAS  PubMed  Google Scholar 

  • Kimura Y, Inui M, Kadoma M, Kijima Y, Sasaki T, Tada M (1991) Effects of monoclonal antibody against phospholamban on calcium-pump ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 23:1223–1230

    CAS  PubMed  Google Scholar 

  • Kirchberger MA, Tada M (1976) Effects of adenosine-3,5-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J Biol Chem 251:725–729

    CAS  PubMed  Google Scholar 

  • Kirchberger MA, Tada M, Katz AM (1974) Adenosine-3,5,-monophosphate-dependent protein kinase catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem 249:6166–6173

    CAS  PubMed  Google Scholar 

  • Kirschbaum B, Kucher HB, Termin A, Kelly AM, Pette D (1990) Antagonistic effects of chronic low-frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscles. J Biol Chem 265:13974–13980

    CAS  PubMed  Google Scholar 

  • Klee CB, Vanaman TC (1982) Calmodulin. Adv Protein Chem 35:213–303

    CAS  PubMed  Google Scholar 

  • Klein MG, Kovacs L, Simon BJ, Schneider MF (1991) Decline of myoplasmic Ca, recovery of calcium release and sarcoplasmic reticulum Ca-pump properties in frog skeletal muscle. J Physiol 414:639–671

    Google Scholar 

  • Klug GA, Reichmann H, Pette D (1983a) Rapid reduction in parvalbumin concentration during chronic stimulation of rabbit fast-twitch muscles. FEBS Lett 152:180–182

    CAS  PubMed  Google Scholar 

  • Klug GA, Wiehrer W, Reichmann H, Leberer E, Pette D (1983b) Relationship between early alterations in parvalbumin sarcoplasmic reticulum and metabolic enzymes in chronically stimulated fast-twitch muscles. Pflugers Arch 399:280–284

    CAS  PubMed  Google Scholar 

  • Klug GA, Reichmann H, Pette D (1985) Decreased parvalbumin contents in skeletal muscles of C57BL/6J(dy2J/dy2J) dystrophic mice. Muscle Nerve 8:576–579

    CAS  PubMed  Google Scholar 

  • Klug GA, Leberer E, Leisner E, Simoneau JA, Pette D (1988) Relationship between parvalbumin content and the speed of relaxation in chronically stimulated rabbit fasttwitch muscle. Pflugers Arch 411:126–131

    CAS  PubMed  Google Scholar 

  • Knudson CM, Mickelson JR, Louis CF, Campbell KP (1990) Distinct immunopeptide maps of the sarcoplasmic reticulum calcium-release channel in malignant hyperthermia. J Biol Chem 265:2421–2424

    CAS  PubMed  Google Scholar 

  • Kodama T (1985) Thermodynamic analysis of muscle ATPase mechanisms. Physiol Rev 65:467–552

    CAS  PubMed  Google Scholar 

  • Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of a calcium-magnesium-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korczak B, Zarain-Herzberg A, Brandl CJ, Ingles CJ, Green NM, MacLennan DH (1988) Structure of the rabbit fast-twitch skeletal muscle Ca-ATPase gene. J Biol Chem 263:4813–4819

    CAS  PubMed  Google Scholar 

  • Kovács L, Rios E, Schneider MF (1979) Calcium transients and intramembrane charge movement in skeletal muscle fibers. Nature 279:391–396

    PubMed  Google Scholar 

  • Krenács T, Molnár E, Dobó E, Dux L (1989) Skeletal muscle fiber typing with sarcoplasmic reticulum calcium-ATPase and myoglobin immunohistochemistry. Histochem J 21:145–155

    PubMed  Google Scholar 

  • Kretsinger RH (1980) Structure and evolution of calcium-modulated proteins. Crit Rev Biochem 8:119–174

    CAS  Google Scholar 

  • Kretsinger RH (1990) Why cells must export calcium. In: Bronner F (ed) Intracellular calcium regulation. Liss, New York, pp 439–457

    Google Scholar 

  • Kugelberg E, Thomell LE (1983) Contraction time, histochemical type and terminal cisternae volume of rat motor units. Muscle Nerve 6:149–153

    CAS  PubMed  Google Scholar 

  • Kumagai H, Ebashi S, Takeda F (1955) Essential relaxing factor in muscle other than myokinase and creatine phosphokinase. Nature 176:166

    CAS  PubMed  Google Scholar 

  • Kushmerick MJ, Podolsky RJ (1969) Ionic mobility in muscle cells. Science 166:1297–1298

    CAS  PubMed  Google Scholar 

  • Larsson L, Edstrom L, Lindgren B, Gorza L, Schiaffino S (1991) MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. Am J Physiol 261:C93–C101

    CAS  PubMed  Google Scholar 

  • Läuger P (1987) Voltage dependence of sodium-calcium exchange predictions from kinetic models. J Member Biol 99:1–12

    Google Scholar 

  • Lazarides E (1980) Intermediate filemants as mechanical integrators of cellular space, Nature 283:249–256

    CAS  PubMed  Google Scholar 

  • Leberer E, Pette D (1986) Immunochemical quantification of sarcoplasmic reticulum calcium ATPase, calsequestrin and of parvalbumin in rabbit skeletal muscles of defined fiber composition. Eur J Biochem 156:489–496

    CAS  PubMed  Google Scholar 

  • Leberer E, Pette D (1990) Influence of neuromuscular activity on the expression of parvalbumin in mammalian skeletal muscle. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 497–508

    Google Scholar 

  • Leberer E, Härtner KT, Pette D (1987) Reversible inhibition of sarcoplasmic reticulum calcium ATPase by altered neuromuscular activity. Eur J Biochem 162:555–561

    CAS  PubMed  Google Scholar 

  • Leberer E, Härtner KT, Pette D (1988) Postnatal development of calcium sequenstration by the sarcoplasmic reticulum of fast and slow muscles in normal and dystrophic mice. Eur J Biochem 174:247–253

    CAS  PubMed  Google Scholar 

  • Leberer E, Härtner KT, Brandl CJ, Fujii T, Tada M, MacLennan DH, Pette D (1989) Slow cardiac sarcoplasmic reticulum calcium ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur J Biochem 185:51–54

    CAS  PubMed  Google Scholar 

  • Leberer E, Timms BG, Campbell KP, MacLennan DH (1990) Purification, calciumbinding properties and ultrastructural localization of the 53 000 and 160 000 (Sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J Biol Chem 265:10118–10124

    CAS  PubMed  Google Scholar 

  • Lecarpentier Y, Martin JL, Gastineau P, Hatt PY (1982) Load dependence of mammalian heart relaxation during cardiac hypertrophy and heart failure. Am J Physiol 242:H855–H861

    CAS  PubMed  Google Scholar 

  • Lederer WJ, Nelson MT (1983) Effects of extracellular sodium on calcium efflux from barnacle muscle single cells. J Physiol 341:325–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Ondrias K, Duhl AJ, Ehrlich BE, Kim DH (1991) Comparison of calcium release from sarcoplasmic reticulum of slow-and fast-twitch muscles. J Membr Biol 122:155–163

    CAS  PubMed  Google Scholar 

  • Lehky P, Blum HE, Stein AE, Fisher EH (1974) Isolation and characterization of parvalbumins from the skeletal muscle of higher vertebrates. J Biol Chem 249:4332–4334

    CAS  PubMed  Google Scholar 

  • LePeuch CJ, Demaille JG (1989) Covalent regulation of the cardiac sarcoplasmic reticulum calcium pump. Cell Calcium 10:397–400

    CAS  Google Scholar 

  • Leung AT, Imagawa T, Block B, Franzini-Armstrong C, Campbell KP (1988) Biochemical and ultrastructural characterization of the 1,4,dihydropyridine receptor from rabbit skeletal muscle. J Biol Chem 263:994–1001

    CAS  PubMed  Google Scholar 

  • Levitsky DO, Benevolensky S, Ikemoto N, Syrbu SI, Watras J (1989) Monoclonal antibodies to dog heart sarcoplasmic reticulum as markers of endoplasmic reticulum. J Mol Cell Cardiol 21:55–58

    PubMed  Google Scholar 

  • Limas CJ (1978) Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism. Am J Physiol 234:H426–H431

    CAS  PubMed  Google Scholar 

  • Luff AR (1981) Dynamic properties of the inferior rectus extensor digitorum longus, diaphragm and soleus muscles of the mouse. J Physiol 313:161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luff AR, Atwood HL (1971) Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of mouse during postnatal development. J Cell Biol 51:369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs GL, Kapus A (1987) Measurement of the matrix free calcium concentration in heart mitochondria by entrapped fura 2 and quin 2. Biochem J 248:609–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH (1989) Molecular cloning of the mammalian smooth muscle sarco (endo) plasmic reticulum Ca-ATPase. J Biol Chem 264:7059–7065

    CAS  PubMed  Google Scholar 

  • Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266:17067–17071

    CAS  PubMed  Google Scholar 

  • Mabuchi K, Jorgensen AO, Fish J, Sreter FA, Gergely J (1989) Transformation of sarcoplasmic reticulum Ca-ATPase isoenzymes in indirectly stimulated rabbit muscles. Biophys J 55:95a

    Google Scholar 

  • Mabuchi K, Sreter FA, Gergely J, Jorgensen AO (1990) Myosin and sarcoplasmic reticulum calcium-ATPase isoforms in electrically stimulated rabbit fast muscles. In: Pette D (ed) The dynamic state of the muscle fibers. De Gruyter, Berlin, pp 445–462

    Google Scholar 

  • MacLennan DH (1990) Molecular tools to elucidate problems in excitation-contraction coupling. Biophys J 58:1355–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLennan DH, Ostwald TJ, Stewart PS (1974) Structural components of the sarcoplasmic reticulum membrane. Ann NY Acad Sci 227:527–536

    CAS  PubMed  Google Scholar 

  • MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino acid sequence of a Ca-Mg-dependent ATPase from rabbit muscle sarcoplasmic reticulum deduced from its complementary DNA sequence. Nature 316:696–700

    CAS  PubMed  Google Scholar 

  • MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, Frodis W, Britt BA, Worton RG (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343:559–561

    CAS  PubMed  Google Scholar 

  • MacLennan PA, McArdle A, Edwards RHT (1991) Effects of calcium on protein turnover of incubated muscles from mdx mice. Am J Physiol 260:E594–E598

    CAS  PubMed  Google Scholar 

  • Mahony L, Jones LR (1986) Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem 261:15257–15265

    CAS  PubMed  Google Scholar 

  • Maier A, Gambke B, Pette D (1986a) Degeneration-regeneration as a mechanism contributing to the fast-to-slow conversion of chronically stimulated fast-twitch rabbit muscle. Cell Tissue Res 244:635–643

    CAS  PubMed  Google Scholar 

  • Maier A, Leberer E, Pette D (1986b) Distribution of sarcoplasmic reticulum calcium ATPase and of calsequestrin in rabbit and rat skeletal muscle fibers. Histochemistry 86:63–69

    CAS  PubMed  Google Scholar 

  • Makinose M (1969) The phosphorylation of the membranal protein of the sarcoplasmic reticulum vesicles during active calcium transport. Eur J Biochem 10:74–82

    CAS  PubMed  Google Scholar 

  • Marsden CD, Maedows JC (1970) The effect of adrenaline on the contraction of human muscle. J Physiol 207:429–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh BB (1951) A factor modifying muscle fiber syneresis. Nature 167:1065–1066

    CAS  PubMed  Google Scholar 

  • Marsh BB (1952) The effect of ATP on the fibre volume of a muscle homogenate. Biochim Biophys Acta 9:247–260

    CAS  PubMed  Google Scholar 

  • Martonosi A (1969a) Sarcoplasmic reticulum VII. Properties of a phosphoprotein intermediate in calcium transport. J Biol Chem 244:613–620

    CAS  PubMed  Google Scholar 

  • Martonosi A (1969b) The protein composition of the sarcoplasmic reticulum membranes. Biochem Biophys Res Commun 36:1039–1044

    CAS  PubMed  Google Scholar 

  • Martonosi A (1976) The effect of ATP upon the reactivity of SH groups in sarcoplasmic reticulum membranes. FEBS Lett 67:153–155

    CAS  PubMed  Google Scholar 

  • Martonosi A, (1984) Mechanisms of calcium release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev 64:1240–1320

    CAS  PubMed  Google Scholar 

  • Martonosi A (1989) Calcium regulation in muscle diseases: the influence of innervation and activity. Biochim Biophys Acta 991:155–242

    CAS  PubMed  Google Scholar 

  • Martonosi A, Beeler TJ (1983) Mechanism of calcium transport by sarcoplasmic reticulum in: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology, sect 10: skeletal muscle. Williams and Wilkins, Baltimore, pp 417–485

    Google Scholar 

  • Martonosi A, Halpin R (1972) Sarcoplasmic reticulum: the turnover of proteins and phospholipids in sarcoplasmic reticulum membranes. Arch Biochem Biophys 152:440–450

    CAS  PubMed  Google Scholar 

  • Martonosi A, Dux L, Terjung R, Roufa D (1982) Regulation of the membrane assembly during development of sarcoplasmic reticulum. The possible role of calcium. Ann NY Acad Sci 402:485–514

    CAS  PubMed  Google Scholar 

  • Maruyama K, MacLennan DH (1988) Mutation of aspartic acid 315, lysine 352 and lysine 515 alters the calcium transport activity of the calcium-ATPase expressed in COS-1 cells. Proc Natl Acad Sci USA 85:3314–3318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Clarke DM, Fujii J, Inesi G, Loo TW, MacLennan DH (1989) Functional consequences of alterations to amino acids located in the catalytic center (isoleucine 348 threonine 357) and nucleotide-binding domain of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 264:13038–13042

    CAS  PubMed  Google Scholar 

  • Matsushita S, Pette D (1992) Inactivation of sarcoplasmic reticulum Ca-ATPase in low-frequency-stimulated muscle results from a modification of the active site. Biochem J 285:303–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita S, Dux L, Pette D (1991) Separation of active and inactive (nonphosphorylating) Ca-ATPase in sarcoplasmic reticulum subfractions from low-frequency-stimulated rabbit muscle. FEBS Lett 294:203–206

    CAS  PubMed  Google Scholar 

  • Matthews I, Colyer I, Mata AM, Green NM, Sharma RP, Lee AG, East MJ (1989) Evidence for the cytoplasmic location of the N and C terminal segments of sarcoplasmic reticulum Ca-Mg-ATPase. Biochem Biophys Res Commun 161:683–688

    CAS  PubMed  Google Scholar 

  • McCarthy TV, Healey JM, Hefron JJA, Lehane M, Deufel T, Lehmann-Horn F, Farrall M, Johnson K (1990) Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q 12–13.2. Nature 343:562–564

    CAS  PubMed  Google Scholar 

  • McCormack JG, Denton RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180:533–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack JG, Denton RM (1984) Role of Ca ions in the regulation of intramitochondrial metabolism in rat heart. Biochem J 218:235–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh B, Kupsch CC (1987) Staircase, fatigue and caffeine in skeletal muscle in situ. Muscle Nerve 10:717–722

    Google Scholar 

  • Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger JM, Fitts RH (1987) Fatigue from high-and low-frequency muscle stimulation:contractile and biochemical alterations. J Appl Physiol 62:2075–2082

    CAS  PubMed  Google Scholar 

  • Michalak M, Campbell KP, MacLennan DH (1980) Localization of the high-Ca-affinity calcium-binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes. J Biol Chem 255:1317–1326

    CAS  PubMed  Google Scholar 

  • Migala A, Agostini B, Hasselbach W (1973) Tryptic fragmentation of the calcium transport system in the sarcoplasmic reticulum. Z Naturforsch C 28:178–182

    Google Scholar 

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    CAS  PubMed  Google Scholar 

  • Mitchell RD, Saito A, Palade P, Fleischer S (1983) Morphology of isolated triads. J Cell Biol 96:1017–1029

    CAS  PubMed  Google Scholar 

  • Mitchinson C, Wilderspin AF, Trinnaman BJ, Green NM (1982) Identification of a labelled peptide after stoichiometric reaction of fluoresceine isothyocyanate with the Ca-dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS letters 146:87–92

    CAS  PubMed  Google Scholar 

  • Miura Y, Kimura J (1989) Sodium-calcium exchange current: dependence on internal calcium and sodium and competitive binding of external sodium and calcium. J Gen Physiol 93:1129–1145

    CAS  PubMed  Google Scholar 

  • Molnár E, Seidler NW, Jóna I, Martonosi A (1990) The binding of monoclonal and polyclonal antibodies to the Ca-ATPase of sarcoplasmic reticulum: effects of interactions between ATPase molecules. Biochim Biophys Acta 1023:147–167

    PubMed  Google Scholar 

  • Molnár E, Varga S, Martonosi A (1991a) Differences in the susceptibility of various cation transport ATPases to vanadate-catalyzed photocleavage. Biochim Biophys Acta 1068:17–26

    PubMed  Google Scholar 

  • Molnár E, Varga S, Jóna I, Martonosi A (1991b) Covalent labeling of the cytoplasmic or luminal domains of the sarcoplasmic reticulum Ca-ATPase with fluorescent azido dyes. Biochim Biophys Acta 1068:27–40

    PubMed  Google Scholar 

  • Moore PB, Kraus-Friedmann N (1983) Hepatic microsomal Ca-dependent ATPase. Biochem J 214:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RL, Stull JT (1984) Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol 247:C462–C471

    CAS  PubMed  Google Scholar 

  • Morimoto K, Harrington WF (1974) Evidence for structural changes in vertebrate thin filaments induced by calcium. J Mol Biol 88:693–709

    CAS  PubMed  Google Scholar 

  • Movsesian MA, Nishikawa M, Adelstein RS (1984) Phosphorylation of phospholamban by calcium-activated phospholipid-dependent protein kinase. J Biol Chem 259:8029–8032

    CAS  PubMed  Google Scholar 

  • Movsesian MA, Leveille C, Krall J, Colyer J, Wang J, Campbell KP (1990) Identification and characterization of proteins in sarcoplasmic reticulum from normal and failing human left ventricles. J Mol Cell Cardiol 22:1477–1485

    CAS  PubMed  Google Scholar 

  • Müller A, van Hardeveld C, Simonides SW, van Rijn J (1991) The elevation of sarcoplasmic reticulum Ca-ATPase levels by thyroid hormone in the L6 muscle cell line is potentiated by insulin-like growth factors. Biochem J 275:35–40

    PubMed  PubMed Central  Google Scholar 

  • Nagai T, Makinose M, Hasselbach W (1960) Der physiologische Erschlaffungsfaktor und die Muskelgrana. Biochim Biophys Acta 43:223–238

    CAS  PubMed  Google Scholar 

  • Nairn AC, Perry VS (1979) Calmodulin and myosin light chain kinase of rabbit fast skeletal muscle. Biochem J 179:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamaru Y, Schwartz A (1972) The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum. J Gen Physiol 59:22–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Jilka RL, Boland R, Martonosi A (1976) Mechanism of ATP hydrolysis by the sarcoplasmic reticulum and the role of phospholipids. J Biol Chem 251:5414–5423

    CAS  PubMed  Google Scholar 

  • Napier RM, East JM, Lee AG (1987) Sate of aggregation of the Ca-Mg-ATPase studied using saturation-transfer electron-spin resonance. Biochim Biophys Acta 903:365–375

    CAS  PubMed  Google Scholar 

  • Nelson TE (1988) SR function in malignant hyperthermia. Cell Calcium 9:257–285

    CAS  PubMed  Google Scholar 

  • Nonaka I, Takagi A, Sugita H (1981) The significance of type-IIC muscle fibers in Duchenne muscular dystrophy. Muscle Nerve 4:326–333

    CAS  PubMed  Google Scholar 

  • Norris FH (1961) Isometric relaxation of striated muscle. Am J Physiol 201:403–407

    PubMed  Google Scholar 

  • Nunes MT, Bianco AC, Migala A, Agostini B, Hasselbach W (1985) Thyroxine-induced transformation in sarcoplasmic reticulum of rabbit soleus and psoas muscles. Z Naturforsch 40c:726–734

    CAS  Google Scholar 

  • Nunzi MG, Franzini-Armstrong C (1980) Trabecular network in adult skeletal muscle. J Ultrastruct Res 73:21–26

    CAS  PubMed  Google Scholar 

  • Ogata T (1988) Morphological and histochemical features of fiber types in vertebrate skeletal muscle. Crit Rev Anat Cell Biol 1:229–275

    Google Scholar 

  • Ohnoki S, Martonosi A (1980) Structural differences between calcium transport ATPases isolated from sarcoplasmic reticulum of rabbit, chicken and lobster muscle. Comp Biochem Physiol B65:181–189

    Google Scholar 

  • Padykula HA, Herman E (1955) Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J Histochem Cytochem 3:161–167

    CAS  PubMed  Google Scholar 

  • Pan BS, Palmiter KA, Ploczynski M, Solaro RJ (1990) Slowly exchanging calcium-binding sites unique to cardiac slow muscle troponin C. J Mol Cell Cardiol 22:1117–1124

    CAS  PubMed  Google Scholar 

  • Partridge TA (1991) Myoblast transfer a possible therapy for inherited myopathies. Muscle Nerve 14:197–212

    CAS  PubMed  Google Scholar 

  • Peachey LD, (1965) Transverse tubules in excitation-contraction coupling. Fed Proc 24:1124–1134

    CAS  PubMed  Google Scholar 

  • Peachey LD (1980) Three-dimensional structure of the T system in muscle cells. Proc Int Congr Physiol Sci 28th Budapest 14:299–311

    Google Scholar 

  • Peachey LD, Porter KR (1959) Intracellular impulse conduction in muscle cells. Science 129:721–722

    CAS  PubMed  Google Scholar 

  • Peachey LD, Franzini-Armstrong C (1983) Structure and function of membrane systems of skeletal muscle cells. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology, sect 10: skeletal muscle. Williams and Wilkins, Baltimore, pp 23–122

    Google Scholar 

  • Pechere JF, Demaille J, Capony JF (1971) Muscular parvalbumin: preparative and analytical methods of general applicability. Biochim Biophys Acta 236:391–408

    CAS  PubMed  Google Scholar 

  • Pedersen PL, Carafoli E (1987a) Ion motive ATPases. I. Ubiquity, properties and significance to cell function. TIBS 12:146–150

    CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987b) Ion motive ATPases. II. Energy coupling and work output. TIBS 12:186–189

    CAS  Google Scholar 

  • Peracchia C, Dux L, Martonosi A (1984) Crystallization of intramembrane particles in rabbit sarcoplasmic reticulum vesicles by vanadate. J Muscle Res Cell Motil 5:431–442

    CAS  PubMed  Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calciummodulated proteins. TINS 12:462–467

    CAS  PubMed  Google Scholar 

  • Pette D (1985) Metabolic heterogeneity of muscle fibers. J Exp Biol 115:179–189

    CAS  PubMed  Google Scholar 

  • Pette D (1990a) Dynamics of stimulation-induced fast-to-slow transitions in protein isoforms of the thick and thin filaments. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 415–429

    Google Scholar 

  • Pette D (1990b) Chronic stimulation induced changes in phenotype expression of skeletal muscle. In: Carpentier A, Bourgeois IM (eds) Cardiomyoplasty. Futura, Mt Kisco

    Google Scholar 

  • Pette D (1991) Effects of chronic electrostimulation on muscle gene expression. Semin Thorac Cardiovasc Surg 3:101–105

    CAS  PubMed  Google Scholar 

  • Pette D, Staron R (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    CAS  PubMed  Google Scholar 

  • Pette D, Vrbova G (1985) Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    CAS  PubMed  Google Scholar 

  • Pette D, Staudte HW, Vrbova G (1972) Physiological and biochemical changes induced by long-term stimulation of fast muscles. Naturwissenschaften 59:469–470

    CAS  PubMed  Google Scholar 

  • Pette D, Smith ME, Staudte HW, Vrbova G (1973) Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflugers Arch 338:257–272

    CAS  PubMed  Google Scholar 

  • Pette D, Muller W, Leisner E, Vrbova G (1976) Time-dependent effects on contractile properties, fiber population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast-twitch muscles of the rabbit. Pflugers Arch 364:103–112

    CAS  PubMed  Google Scholar 

  • Pick U (1982) The interaction of vanadate ions with the calcium ATPase from sarcoplasmic reticulum. J Biol Chem 257:6111–6119

    CAS  PubMed  Google Scholar 

  • Pick U, Karlish SJD (1980) Indication for an oligomer structure and conformational changes in sarcoplasmic reticulum Ca-ATPase labelled selectively with fluoresceine. Biochim Biophys Acta 626:255–261

    CAS  PubMed  Google Scholar 

  • Pietrobon D, di Virgilio F, Pozzan T (1990) Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem 293:599–622

    Google Scholar 

  • Pikula S, Müllner, Dux L, Martonosi A (1988) Stabilization and crystallization of Ca-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem 263:5277–5286

    CAS  PubMed  Google Scholar 

  • Porter KR, Palade GE (1957) Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol 3:260–300

    Google Scholar 

  • Post JA, Langer GA, Jos AF, DenKamp O, Verkleij AJ (1988) Phospholipid asymmertry in cardiac sarcolemma. Biochim Biophys Acta 943:256–264

    CAS  PubMed  Google Scholar 

  • Potter JD, Gergely (1975) The Ca-and Mg-binding sites on troponin and their role in the regulation of myofibrillar ATPase. J Biol Chem 250:4628–4633

    CAS  PubMed  Google Scholar 

  • Potter JD, Johnson JD (1982) Troponin. In: Cheung WY (ed) Calcium and cell function vol III. Academic, London, pp 145–173

    Google Scholar 

  • Powell JA (1990) Muscular dysgenesis: a model system for studying skeletal muscle development. FASEB J 4:2798–2808

    CAS  PubMed  Google Scholar 

  • Pucell A, Martonosi A (1971) Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca transport. J Biol Chem 246:3389–3397

    CAS  PubMed  Google Scholar 

  • Rayns DG, Devine CE, Sutherland CL (1975) Freeze-fracture studies of membrane systems in vertebrate muscle. I. Striated muscle. J Ultrastruct Res 50:306–321

    CAS  PubMed  Google Scholar 

  • Reeves JP (1990) Sodium-calcium exchange. In: Brobber F (ed) Intracellular calcium regulation. Liss, New York, pp 305–347

    Google Scholar 

  • Reiser PJ, Stokes BT (1982) Development of contractile properties in avian embryonic skeletal muscle. Am J Physiol 242:C52–C58

    CAS  PubMed  Google Scholar 

  • Retzius G (1980) Muskelfibrille und Sarkoplasma. Biol Untersuch Neue Folge 1:51–88

    Google Scholar 

  • Ridgway EB, Ashley CG (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–234

    CAS  PubMed  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptor in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    CAS  PubMed  Google Scholar 

  • Rios E, Pizzaro G (1991) Voltage sensors of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    CAS  PubMed  Google Scholar 

  • Ritchie JM, Wilkie DR (1955) The effects of previous stimulation on the active state of muscle. J Physiol 130:488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time course of calcium exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increase in calcium. Biophys J 34:559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson SP, Johnson JD, Holgrade MJ, Kranias EG, Potter JD, Solaro RJ (1982) The effect of TN-I phosphorylation on the calcium-binding properties of the calcium-regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263

    CAS  PubMed  Google Scholar 

  • Rohrer D, Dillmann WH (1989) Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum calcium ATPase in the rat heart. J Biol Chem 263:6941–6944

    Google Scholar 

  • Rosenblueth A, Rubio R (1960) Tetanic summation in isotonic and isometric responses. Arch Intern Physiol 68:165–180

    CAS  Google Scholar 

  • Roufa D, Wu FS, Martonosi A (1981) The effect of calcium ionophores upon the synthesis of proteins in cultured skeletal muscle. Biochim Biophys Acta 674:225–237

    CAS  PubMed  Google Scholar 

  • Russell SD, Cambon N, Nadal-Ginard B, Wahlen R (1988) Thyroid hormone induces a nerve-independent precocious expression of fast myosin heavy chain mRNA in rat hindlimb skeletal muscle. J Biol Chem 263:6370–6374

    CAS  PubMed  Google Scholar 

  • Sagara Y, Inesi G (1991) Inhibition of the sarcoplasmic reticulum Ca transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506

    CAS  PubMed  Google Scholar 

  • Sagara Y, Wade JB, Inesi G (1992) A conformational mechanism for formation of a deadend complex by the sarcoplasmic reticulum Ca-ATPase with thapsigargin. J Biol Chem 267:1286–1292

    CAS  PubMed  Google Scholar 

  • Sahlin K, Edstrom L, Sjoholm H, Hultman E (1981) Effects of lactic acid accumulation and ATP decrease on muscle tension and relaxation. Am J Physiol 240:C121–C126

    CAS  PubMed  Google Scholar 

  • Saito A, Seiler S, Chu A, Fleischer S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99:875–885

    CAS  PubMed  Google Scholar 

  • Saito A, Inui M, Radermacher M, Frank J, Fleischer S (1988) Ultrastructure of the calcium-release channel of sarcoplasmic reticulum. J Cell Biol 107:211–219

    CAS  PubMed  Google Scholar 

  • Salmons S, Sreter FA (1976) Significance of impulse activity in the transformation of skeletal muscle types. Nature 263:30–34

    CAS  PubMed  Google Scholar 

  • Sandow A, Zeman RJ (1979) Tetanus relaxation temperature effects and arrhenius analysis. Biochim Biophys Acta 547:27–35

    CAS  PubMed  Google Scholar 

  • Sarkadi B, Enyedi A, Gárdos G (1980) Molecular properties of red-cell calcium pump: effects of calmodulin, proteolytic digestion and drugs on the kinetics of active calcium uptake in inside-out red cell membrane vesicles. Cell Calcium 1:287–297

    CAS  Google Scholar 

  • Sarkadi B, Enyedi A, Penniston I, Verma K, Dux L, Molnár E, Gárdos G (1988) Characterization of membrane calcium pumps by simultaneous immunoblotting and P32 autoradiography. Biochim Biophys Acta 939:40–46

    CAS  PubMed  Google Scholar 

  • Schachat FH, Diamond MS, Brandt PW (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198:551–554

    CAS  PubMed  Google Scholar 

  • Schachat FH, Briggs MM, Williamson EK, McGinnis H (1990) Expression of fast thin filament proteins. Defining fiber archetypes in a molecular continuum. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 279–291

    Google Scholar 

  • Scherer NM, Deamer DW (1986) Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydril groups in the calcium ATPase. Biochem Biophys Res Commun 246:589–601

    CAS  Google Scholar 

  • Schiaffino S, Saggin L, Viel A, Gorza L (1985) Differentiation of fibre types in rat skeletal muscle visualized with monoclonal antimyosin antibodies. J Muscle Res Cell Motil 6:60–61

    Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type-2 skeletal muscle fibers. J Muscle Res Cell Motil 10:197–205

    CAS  PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Ausoni S, Bottinelli R, Reggiani C, Larson L, Edstrom L, Gundersen K, Lomo T (1990) Muscle fiber types expressing different myosin heavy chain isoforms. Their functional properties and adaptive capacity. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 329–342

    Google Scholar 

  • Schmalbruch H (1979) The membrane systems in different fiber types of the triceps surae muscle of cat. Cell Tissue Res 204:187–200

    CAS  PubMed  Google Scholar 

  • Schmitt TL, Pette D (1991) Fiber-type-specific distribution of parvalbumin in rabbit skeletal muscle. Histochemistry 96:459–465

    CAS  PubMed  Google Scholar 

  • Schwartz K, Lompre AM, de La Bastie D, Duc P, Boheler KR, Samuel JL, Rappaport L, Mercadier JJ (1990) The mechanogenic transduction of the mammalian myocardium. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 521–532

    Google Scholar 

  • Seguchi M, Harding JA, Jarmakani JM (1986) Developmental changes in the function of sarcoplasmic reticulum. J Mol Cell Cardiol 18:189–195

    CAS  PubMed  Google Scholar 

  • Seidler NW, Jona I, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the calcium ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

    CAS  PubMed  Google Scholar 

  • Shigekawa MJ, Finegan M, Katz AM (1976) Calcium transport ATPase of canine cardiac sarcoplasmic reticulum: a comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. J Biol Chem 251:6894–6900

    CAS  PubMed  Google Scholar 

  • Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane calcium transporting ATPase from rat brain. J Biol Chem 263:8646–8657

    CAS  PubMed  Google Scholar 

  • Simon BJ, Klein MG, Schneider MF (1991) Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fiber. J Gen Physiol 97:437–471

    CAS  PubMed  Google Scholar 

  • Simoneau JA, Pette D (1988) Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse rat guinea pig and rabbit. Pflugers Arch 412:86–92

    CAS  PubMed  Google Scholar 

  • Simonides W, van Hardeveld C (1990) An assay for sarcoplasmic reticulum Ca-ATPase activity in muscle homogenates. Anal Biochem 191:321–331

    CAS  PubMed  Google Scholar 

  • Simoneau JA, Kaufmann M, Hartner KT, Pette D (1989) Relationship between chronic stimulation-induced changes in contractile properties and the calcium sequestering system of rat and rabbit fast twitch muscles. Pflugers Arch 414:629–633

    CAS  PubMed  Google Scholar 

  • Simonides W, van der Linden GC, van Hardeveld C (1990) Thyroid hormone differentially affects mRNA levels of calcium-ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscle. FEBS Lett 27:73–76

    Google Scholar 

  • Somlyo AP, Bond M, Somlyo AV (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314:622–625

    CAS  PubMed  Google Scholar 

  • Sommer JR, Johnson EA (1979) Ultrastructure of the cardiac muscle in Burns ER (ed) Handbook of physiology: the cardiovascular system. American Physiological Society Bethesda, pp 113–186

    Google Scholar 

  • Squier TC, Hughes SE, Thomas DD (1988) Rotational dynamics and protein-protein interactions in the calcium-ATPase mechanism. J Biol Chem 263:9162–9170

    CAS  PubMed  Google Scholar 

  • Sreter FA (1969) Temperature, pH and seasonal dependence of Ca-uptake and ATPase activity of white and red muscle microsomes. Arch Biochem Biophys 134:25–33

    CAS  PubMed  Google Scholar 

  • Sreter FA, Gergely J (1964) Comparative studies of the Mg-activated ATPase activity and Ca uptake of fractions of white and red muscle homogenates. Biochem Biophys Res Commun 16:438–443

    CAS  PubMed  Google Scholar 

  • Sreter FA, Lopez JR, Alamo L, Mabuchi K, Gergely J (1987) Changes in intracellular ionized calcium concentration associated with muscle fiber type transformation. Am J Physiol 253:C296–C300

    CAS  PubMed  Google Scholar 

  • Staron RS, Hikida RS, Hegermann FC (1983) Reevaluation of human muscle fast-twitch subtypes: evidence for a continuum. Histochemistry 78:33–39

    Google Scholar 

  • Staron RS, Gohlsch B, Pette D (1987) Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflugers Arch 408:444–450

    CAS  PubMed  Google Scholar 

  • Stein RE, Gordon T, Shriver J (1982) Temperature dependence of mammalian muscle contractions and ATPase activities. Biophys J 40:97–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson DG, Wilkie DA (1981) Calcium-activated force responses in fast-and slow-twitch skinned muscle fibers of the rat at different temperatures. J Physiol 317:281–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson DG, Williams DA (1983) Slow amphibian muscle fibers become less sensitive to calcium with increasing sarcomere length. Pflugers Arch 397:248–250

    CAS  PubMed  Google Scholar 

  • Stewart PS, MacLennan DH (1976) Isolation and characterization of tryptic fragments of adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem 251:712–719

    CAS  PubMed  Google Scholar 

  • Stokes DL, Green NM (1990a) Structure of calcium ATPase electron microscopy of frozen hydrated crystals at 6A resolution in projection. J Mol Biol 213:529–538

    CAS  PubMed  Google Scholar 

  • Stokes DL, Green NM (1990b) Three-dimensional crystals of calcium ATPase from sarcoplasmic reticulum: symmetry and molecular packing. Biophys J 57:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strehler EE, James P, Fischer R, Heim R, Vorherr T, Filoteo AG, Penniston JT, Carafoli E (1990) Peptide sequence analysis and molecular cloning reveal two calcium-pump isoforms in the human erythrocyte membrane. J Biol Chem 265:2835–2842

    CAS  PubMed  Google Scholar 

  • Stuhlfauth I, Reininghaus J, Jockusch H, Heizmann CW (1984) Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties. Proc Natl Acad Sci USA 81:4814–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suko J (1973) The calcium pump of cardiac sarcoplasmic reticulum: functional alteration at different levels of thyroid state in rabbits. J Physiol 228:563–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumida M, Wang T, Mandel F, Froelich JP, Schwartz A (1978) Transient kinetics of calcium transport of sarcoplasmic reticulum: a comparison of cardiac and skeletal muscle. J Biol Chem 253:8772–8777

    CAS  PubMed  Google Scholar 

  • Sutko JL, Airey JA, Murakami K, Takeda M, Beck C, Deerinck T, Ellismann MH (1991) Foot protein isoforms are expressed at different times during embryonic chick skeletal muscle development. J Cell Biol 113:793–803

    CAS  PubMed  Google Scholar 

  • Szent-Györgyi A (1951) Chemistry of muscle contraction. Academic, New York

    Google Scholar 

  • Szent-Györgyi A (1953) Chemical physiology of contraction in body and heart muscle. Academic, New York

    Google Scholar 

  • Szymanska G, Amler E, Ball WJ, Kranias EG (1991) Regulation of skeletal sarcoplasmic reticulum calcium ATPase by phospholamban and negatively charged phospholipids. Biophys J 59:252a

    Google Scholar 

  • Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3,5, monophosphate-dependent protein kinase. J Biol Chem 249:6174–6180

    CAS  PubMed  Google Scholar 

  • Takagi A, Endo M (1977) Guinea pig soleus and extensor digitorum longus: a study on single skinned fibers. Exp Neurol 55:95–101

    CAS  PubMed  Google Scholar 

  • Takeshima H, Nishiura S, Matsumoto S, Ishida T, Kangawa K, Minamono N, Matsuo H, Ueda M, Hanoaka M, Hisose T, Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    CAS  PubMed  Google Scholar 

  • Tanabe T, Takeshima H, Mikani A, Flockerzie V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor of calcium channel blockers from skeletal muscle. Nature 328:313–318

    CAS  PubMed  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    CAS  PubMed  Google Scholar 

  • Tanabe T, Mikami A, Numa S, Beam K (1990a) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344:451–453

    CAS  PubMed  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990b) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    CAS  PubMed  Google Scholar 

  • Taylor KA, Dux L, Martonosi A (1984) Structure of vanadate-induced crystals of sarcoplasmic reticulum calcium ATPase. J Mol Biol 174:193–204

    CAS  PubMed  Google Scholar 

  • Taylor KA, Dux L, Martonosi A (1986) Three-dimensional reconstruction of negatively stained crystals of the calcium ATPase from muscle sarcoplasmic reticulum. J Mol Biol 187:417–427

    CAS  PubMed  Google Scholar 

  • Taylor KA, Dux L, Varga S, Ting-Beall HP, Martonosi A (1988a) Analysis of two-dimensional crystals of the calcium ATPase of sarcoplasmic reticulum. Methods Enzymol 157:271–289

    CAS  PubMed  Google Scholar 

  • Taylor KA, Müllner N, Pikula S, Dux L, Peracchia C, Martonosi A (1988b) Electron-microscope observations on calcium ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem 263:5287–5299

    CAS  PubMed  Google Scholar 

  • Taylor WR, Green NM (1989) The predicted secondary structure of the nucleotide binding sites of six cation-transporting ATPases lead to a probable tertiary fold. Eur J Biochem 179:241–248

    CAS  PubMed  Google Scholar 

  • Termin A, Staron RS, Pette D (1989) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453–457

    CAS  PubMed  Google Scholar 

  • Thorey-Lawson DA, Green NM (1975) Separation and characterization of tryptic fragments from the adenosine triphosphatase of sarcoplasmic reticulum. Eur J Biochem 59:193–200

    Google Scholar 

  • Thornell LE, Carlsson E, Kugelberg E, Grove BK (1987) Myofibrillar M-band structure and composition of physiologically defined rat motor units. Am J Physiol 253:C456–C468

    CAS  PubMed  Google Scholar 

  • Tillack TW, Boland R, Martonosi A (1974) The ultrastructure of developing sarcoplasmic reticulum. J Biol Chem 249:624–633

    CAS  PubMed  Google Scholar 

  • Ting-Beall HP, Burgess F, Dux L, Martonosi A (1987) Electron-microscopic analysis of 2-dimensional crystals of the calcium ATPase. J Muscle Res Cell Motil 8:252–259

    CAS  PubMed  Google Scholar 

  • Tunwell REA, O'Connor CD, Mata AM, East JM, Lee AG (1991) Mapping epitopes on the calcium-magnesium ATPase of sarcoplasmic reticulum using fusion proteins. Biochim Biophys Acta 1073:585–592

    CAS  PubMed  Google Scholar 

  • Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free-calcium levels found in muscle from mdx mice. Nature 335:735–738

    CAS  PubMed  Google Scholar 

  • Turner PR, Fong P, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115:1701–1712

    CAS  PubMed  Google Scholar 

  • Vanderkooi JM, Ierkomos A, Nakamura H, Martonosi A (1977) Fluorescence energy transfer between calcium transport ATPase molecules in artificial membranes. Biochemistry 16:1262–1267

    CAS  PubMed  Google Scholar 

  • Vasington FD, Murphy (1962) Calcium uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237:2670–2677

    CAS  PubMed  Google Scholar 

  • Végh M, Molnár E, Martonosi A (1990) Vanadate-catalyzed conformationally specific photocleavage of the Ca-ATPase of sarcoplasmic reticulum. Biochim Biophys Acta 1023:168–183

    PubMed  Google Scholar 

  • Vercesi A, Reynafarje B, Lehninger AL (1978) Stoichiometry of H ejection and calcium uptake coupled to electron transport in rat heart mitochondria. J Biol Chem 253:6379–6385

    CAS  PubMed  Google Scholar 

  • Veratti E (1902) Richerche sulla fine struttura della fibre muscolare striata. Mem Ist Lombardo Cl Sci Mat Nat 19:87–133

    Google Scholar 

  • Vilsen B, Andersen JP, Clarke DM, MacLennan DH (1989) Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the calcium ATPase of sarcoplasmic reticulum. J Biol Chem 264:21024–21030

    CAS  PubMed  Google Scholar 

  • Vilsen B, Andersen JP, MacLennan DH (1991a) Functional consequences of alterations to amino acids located in the hinge domain of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 266:16157–16164

    CAS  PubMed  Google Scholar 

  • Vilsen B, Andersen JP, MacLennan DH (1991b) Functional consequences of alterations to hydrophobic amino acids located at the M4S4 boundary of the Ca-ATPase of sarcoplasmic reticulum. J Biol Chem 266:18839–18845

    CAS  PubMed  Google Scholar 

  • Volpe P, Damiani E, Salviati G, Margreth A (1982) Transitions in membrane composition during postnatal development of rabbit fast muscles. J Muscle Res Cell Motil 3:213–230

    CAS  PubMed  Google Scholar 

  • Volpe P, Simon BJ (1991) The bulk of calcium released in the myoplasm is free in the SR and does not unbind from calsequestrin. FEBS Lett 278:274–278

    CAS  PubMed  Google Scholar 

  • Vrbova G (1963) The effect of motoneuron activity on the speed of contraction of striated muscle. J Physiol 169:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waas W, Hasselbach W (1981) Interference of nucleoside diphosphate with NTP-dependent calcium fluxes and calcium-dependent NTP hydrolysis in vesicular sarcoplasmic reticulum membrane. Eur J Biochem 116:601–608

    CAS  PubMed  Google Scholar 

  • Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S (1989) Three-dimensional architecture of the calcium-channel foot structure of sarcoplasmic reticulum. Nature 338:167–170

    CAS  PubMed  Google Scholar 

  • Waku A, Hayakawa F, Nakazawa Y (1977) Regulation of the fatty acid pattern of phospholipids in rabbit sarcoplasmic reticulum. Specificity of glycerophosphate-1-acylglycerophosphate and 2-acylglycero phosphorylcholine acyltransferase systems. J Biochem 82:671–677

    CAS  PubMed  Google Scholar 

  • Wallimann T, Wyn M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Grassi de Gende AO, Schwartz A (1979) Kinetic properties of calcium adenosine triphosphatase of sarcoplasmic reticulum isolated from cat skeletal muscles: a comparison of caudofemoralis fast, tibialis mixed, and soleus slow. J Biol Chem 254:10675–10678

    CAS  PubMed  Google Scholar 

  • Watkins GB, Hoffmann EP, Slayter HS, Kunkel LM (1988) Immunoelectron-microscopic localization of dystrophin in myofibers. Nature 333:863–866

    CAS  PubMed  Google Scholar 

  • Waugh RA, Sommer JR, Peachey LD (1974) Cardiac sarcoplasmic reticulum distribution and ultrastructure revealed by selective staining. Circulation 50:111–113

    Google Scholar 

  • Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52:503–513

    CAS  PubMed  Google Scholar 

  • Westerblad H, Lannergren J (1991) Slowing of relaxation during fatigue in single mouse muscle fibers. J Physiol 434:323–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H, Lee JA, Lannergren J (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261:C195–C209

    CAS  PubMed  Google Scholar 

  • Wiehrer W, Pette D (1983) The ratio between intrinsic 115-kD and 30-kD peptides as a marker of fiber-type-specific sarcoplasmic reticulum in mammalian muscles. FEBS Lett 158:317–320

    CAS  PubMed  Google Scholar 

  • Wier WG (1980) Calcium transients during excitation contraction coupling in mammalian heart aequorin signals of canine purkinje fibers. Science 207:1085–1087

    CAS  PubMed  Google Scholar 

  • Wilkinson M (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem 103:179–188

    CAS  PubMed  Google Scholar 

  • Williams JH (1991) Effect of low calcium and calcium antagonists on skeletal muscle staircase and fatigue. Muscle Nerve 13:1118–1124

    Google Scholar 

  • Wollenberger A, Will H (1978) Protein kinase-catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Life Sci 22:1159–1178

    CAS  PubMed  Google Scholar 

  • Wuytack F, Eggermont JA, Raeymakers L, Plessers L, Casteels (1989) Antibodies against the non-muscle isoform of the endoplasmic reticulum calcium transport ATPase. Biochem J 264:765–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Ikemoto N (1978) Distinction of thiols involved in the specific reaction steps of the calcium ATPase of the sarcoplasmic reticulum. J Biol Chem 253:6801–6807

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Tonomura Y (1967) Reaction mechanism of the calcium-dependent ATPase of sarcoplasmic reticulum in skeletal muscle: kinetic studies. J Biochem 62:558–575

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Tonomura (1977) Chemical modification of the calcium-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Changes in the distribution of exposed lysine residues among subfragments with change in enzymatic state. J Biochem 82:653–660

    CAS  PubMed  Google Scholar 

  • Yates DW, Duance VC (1976) The binding of nucleotides and bivalent cations to the calcium-and magnesium-ion-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum. Biochem J 159:719–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Ozawa E (1990) Glycoprotein complex anchoring dystrophin to sarcolemma. J Biochem 108:748–752

    CAS  PubMed  Google Scholar 

  • Zorzato F, Chu A, Volpe P (1989) Antibodies to junctional sarcoplasmic reticulum proteins: probes for the calcium-release channel. Biochem J 261:863–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai AF, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the calcium-release channel ryanodine receptor of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2254

    CAS  PubMed  Google Scholar 

  • Zubrzycka-Gaarn E, Korczak B, Osinska H, Sarzala MG (1982) Studies on sarcoplasmic reticulum from slow-twitch muscles. J Muscle Res Cell Motil 3:191–212

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Dux, L. (1993). Muscle relaxation and sarcoplasmic reticulum function in different muscle types. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 122. Reviews of Physiology, Biochemistry and Pharmacology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035274

Download citation

  • DOI: https://doi.org/10.1007/BFb0035274

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56380-8

  • Online ISBN: 978-3-540-47547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics