Skip to main content
Log in

Torque Stability of Plastic Brackets Following Multiple Loading and Artificial Material Aging – an In-Vitro Comparison

Torquestabilität von Kunststoffbrackets nach multipler Belastung und künstlicher Materialalterung – eine In-vitro-Vergleichsstudie

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective:

The objective of this study was to compare the loaddeflection behavior of plastic brackets made of various materials in response to repeated torque loads with each other and with steel brackets. Material fatigue during wire’s play in the bracket slot, the brackets’ elasticity and the torsional forces applied were analyzed.

Material and Methods:

Groups of ten brackets, each made of pure polycarbonate or variously reinforced polycarbonate or polyurethane, with and without a metal slot, were artificially aged and then torqued with a testing machine five times consecutively in a torque- measuring apparatus. The control group consisted of ten steel brackets. The resulting forces were recorded with the testing machine, and the wire’s deflection recorded with a digital goniometer on a PC and submitted to one-way variance analysis at p < 0.05.

Results:

There were strong fluctuations among the bracket types in both the play of the wire in the bracket slot as well as the brackets’ elasticity. The slot of all the polycarbonate-based brackets was bent open after a single load, except for those with a metal slot. After a single load of up to 20° torque, all the brackets exhibited a significant loss of torque stability ranging between 5% for pure polyurethane and 28.5% for ceramic-reinforced polycarbonate. The loss of torque stability was roughly 17% on average. This loss did not increase significantly when additional loads were applied.

Conclusions:

Each bracket material requires its own torque value to transfer identical torque values onto the tooth in clinical practice. Comparison with steel brackets revealed that only plastic brackets with a metal slot are suitable for clinical use. Adding ceramic and glass fibers to polycarbonate, or using polyurethane has no benefit in terms of torque stability. In addition, after a single application of torque, all brackets lose torque stability in response to a renewed load.

Zusammenfassung

Ziel:

Ziel dieser Untersuchung war es, das Last-Verformungs-Verhalten von Kunststoffbrackets unterschiedlichen Materials bei mehrmaliger Torquebelastung untereinander und mit Stahlbrackets hinsichtlich einer Materialermüdung beim Spiel des Drahtes im Bracketslot, der Elastizität und der applizierbaren Torquekräfte zu vergleichen.

Material und Methodik:

Jeweils zehn Brackets aus reinem und verschieden verstärktem Polycarbonat und Polyurethan mit und ohne Metallslot wurden nach künstlicher Alterung in einer Torquemessapparatur fünfmal hintereinander kontinuierlich mit einer Prüfmaschine belastet. Als Kontrollgruppe dienten zehn Stahlbrackets. Die dabei auftretenden Kräfte wurden mit der Prüfmaschine und die Deflektion des Drahtes mit einem digitalen Winkelmesser auf einem PC registriert und der einfaktoriellen Varianzanalyse bei p < 0,05 unterzogen.

Ergebnisse:

Unter den Brackettypen zeigten sich starke Schwankungen sowohl hinsichtlich des Spiels des Drahtes im Bracketslot als auch der Elastizität der Brackets. Bei allen polycarbonatbasierten Brackets, mit Ausnahme derer mit Metallslot, wurde der Slot nach einmaliger Belastung aufgebogen. Alle Brackets hatten einen signifikanten Torqueverlust nach einmaliger Belastung bis 20° Torque zwischen 5% bei reinem Poly urethan und 28,5% bei keramikverstärktem Polycarbonat. Der Torqueverlust lag im Mittel bei ca. 17%. Dieser Verlust vergrößerte sich nicht signifikant bei erneuten Belastungen.

Schlussfolgerungen:

Für jedes Bracketmaterial wird klinisch ein eigener Torquewert benötigt, um gleiche Torquekräfte auf den Zahn übertragen zu können. Der Vergleich mit den Stahlbrackets zeigt, dass für die klinische Anwendung nur Kunststoffbrackets mit Metallslot geeignet sind. Durch den Zusatz von Keramik und Glasfaser zum Polycarbonat oder durch Verwendung von Polyurethan entstehen keine Vorteile bezüglich der Torquestabilität. Weiterhin reagieren alle Brackets nach einmaligem Einbringen eines Torque mit Torqueverlust bei erneuter Belastung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aird JC, Durning P. Fracture of polycarbonate edgewise brackets: a clinical SEM study. Br J Orthod 1987;14:191–195.

    PubMed  Google Scholar 

  2. Aird JC, Millett DT, Sharples K. Fracture of polycarbonate brackets — a related photoelastic stress analysis. Br J Orthod 1988;15:87–92.

    PubMed  Google Scholar 

  3. Aknin PC, Nanda RS, Duncanson MG Jr, et al. Fracture strength of ceramic brackets during arch wire torsion. Am J Orthod Dentofacial Orthop 1996;109:22–27.

    Article  PubMed  Google Scholar 

  4. Alkire RG, Bagby MD, Gladwin MA, et al. Torsional creep of polycarbonate orthodontic brackets. Dent Mater 1997;13:2–6.

    Article  PubMed  Google Scholar 

  5. Baccetti T, Franchi L, Camporesi M. Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures. Angle Orthod 2008;78:120–124.

    Article  PubMed  Google Scholar 

  6. Bazakidou E, Nanda RS, Duncanson MG Jr, et al. Evaluation of frictional resistance in esthetic brackets. Am J Orthod Dentofacial Orthop 1997;112:138–144.

    Article  PubMed  Google Scholar 

  7. Czochrowska E, Burzykowski T, Buyukyilmaz T, et al. The effect of long-term water storage on the tensile strength of orthodontic brackets bonded with resin-reinforced glassionomer cements. J Orofac Orthop 1999;60:361–370.

    Article  PubMed  Google Scholar 

  8. Dobrin RJ, Kamel IL, Musich DR. Load-deformation characteristics of polycarbonate orthodontic brackets. Am J Orthod 1975;67:24–33.

    Article  PubMed  Google Scholar 

  9. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 1991;13:169–178.

    PubMed  Google Scholar 

  10. Eliades T, Bourauel C. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop 2005;127:403–412.

    Article  PubMed  Google Scholar 

  11. Eliades T, Gioka C, Zinelis S, et al. Plastic brackets: hardness and associated clinical implications. World J Orthod 2004 Spring;5:62–66.

    PubMed  Google Scholar 

  12. Faltermeier A, Behr M, Müssig D. In vitro colour stability of aesthetic brackets. Eur J Orthod 2007;29:354–358.

    Article  PubMed  Google Scholar 

  13. Feldner JC, Sarkar NK, Sheridan JJ, et al. In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. Am J Orthod Dentofacial Orthop 1994;106:265–272.

    Article  PubMed  Google Scholar 

  14. Fischer-Brandies H, Orthuber W, Es-Souni M, et al. Torque transmission between square wire and bracket as function of measurement, form and hardness parameters. J Orofac Orthop 2000;61:258–265.

    Article  PubMed  Google Scholar 

  15. Gmyrek H, Bourauel C, Richter G, et al. Torque capacity of metal and plastic brackets with reference to materials, application, technology and biomechanics. J Orofac Orthop 2002;63:113–128.

    Article  PubMed  Google Scholar 

  16. Harzer W, Bourauel C, Gmyrek H. Torque capacity of metal and polycarbonate brackets with and without metal slot. Eur J Orthod 2004;26:435–441.

    Article  PubMed  Google Scholar 

  17. Holt MH, Nanda RS, Duncanson MG Jr. Fracture resistance of ceramic brackets during arch wire torsion. Am J Orthod Dentofacial Orthop 1991;99:287–293.

    Article  PubMed  Google Scholar 

  18. Lee YK. Changes in the reflected and transmitted color of esthetic brackets after thermal cycling. Am J Orthod Dentofacial Orthop 2008;133:41.e 1–6.

    Google Scholar 

  19. Liu JK, Chang LT, Chuang SF, et al. Shear bond strengths of plastic brackets with a mechanical base. Angle Orthod 2002;72:141–145.

    PubMed  Google Scholar 

  20. Moser JB, Marshall GW, Green FP. Direct bonding of polycarbonate orthodontic brackets: an in vitro study. Am J Orthod 1979;75:78–85.

    Article  PubMed  Google Scholar 

  21. Newesely H, Rossiwall B. Schmelzabrasionen und Schmelzausrisse bei Keramikbrackets. Inf Orthod Kieferorthop 1989;21:577–594.

    PubMed  Google Scholar 

  22. Ødegaard J, Meling T, Meling E. The effects of loops on the torsional stiffnesses of rectangular wires: An in vitro study. Am J Orthod Dentofacial Orthop 1996;109:496–505.

    Article  PubMed  Google Scholar 

  23. Ødegaard J, Meling T, Meling E. An evaluation of the torsional moments developed in orthodontic applications. An in vitro study. Am J Orthod Dentofacial Orthop 1994;105:392–400. Erratum in: Am J Orthod Dentofacial Orthop 1994;106:218.

    Article  PubMed  Google Scholar 

  24. Rains MD, Chaconas SJ, Caputo AA, et al. Stress analysis of plastic bracket configurations. J Clin Orthod 1977;11:120–125.

    PubMed  Google Scholar 

  25. Reicheneder CA, Baumert U, Gedrange T, et al. Frictional properties of aesthetic brackets. Eur J Orthod 2007;29:359–365.

    Article  PubMed  Google Scholar 

  26. Sadat-Khonsari R, Moshtaghy A, Schlegel V, et al. Torque deformation characteristics of plastic brackets: a comparative study. J Orofac Orthop 2004;65:26–33.

    Article  PubMed  Google Scholar 

  27. Schwartz E. Plastic brackets. J Clin Orthod 1971;5:394–396.

    PubMed  Google Scholar 

  28. Thorstenson G, Kusy R. Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states. Angle Orthod 2003;73:167–175.

    PubMed  Google Scholar 

  29. Viazis AD, DeLong R, Bevis RR, et al. Enamel abrasion from ceramic orthodontic brackets under an artificial oral environment. Am J Orthod Dentofacial Orthop 1990;98:103–109.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, M., Klocke, A., Sadat-Khonsari, R. et al. Torque Stability of Plastic Brackets Following Multiple Loading and Artificial Material Aging – an In-Vitro Comparison. J Orofac Orthop 70, 385–395 (2009). https://doi.org/10.1007/s00056-009-9915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-009-9915-0

Key Words:

Schlüsselwörter:

Navigation