Skip to main content
Log in

Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cognitive dysfunctions, including deficits in hippocampus-mediated learning and memory, are core features of the psychopathology of schizophrenia (SZ). Increased levels of kynurenic acid (KYNA), an astrocyte-derived tryptophan metabolite and antagonist of α7 nicotinic acetylcholine and N-methyl-d-aspartate receptors, have been implicated in these cognitive impairments.

Objectives

Following recent suggestive evidence, the present study was designed to narrow the critical time period for KYNA elevation to induce subsequent cognitive deficits.

Methods

KYNA levels were experimentally increased in rats (1) prenatally (embryonic day (ED) 15 to ED 22) or (2) during adolescence (postnatal day (PD) 42 to PD 49). The KYNA precursor kynurenine was added daily to wet mash fed to (1) dams (100 mg/day; control: ECon; kynurenine-treated: EKyn) or (2) adolescent rats (300 mg/kg/day; control: AdCon; kynurenine-treated: AdKyn). Upon termination of the treatment, all animals were fed normal chow until biochemical analysis and behavioral testing in adulthood.

Results

On the last day of continuous kynurenine treatment, forebrain KYNA levels were significantly elevated (EKyn +472 %; AdKyn +470 %). KYNA levels remained increased in the hippocampus of adult EKyn animals (+54 %), but were unchanged in adult AdKyn rats. Prenatal, but not adolescent, kynurenine treatment caused significant impairments in two hippocampus-mediated behavioral tasks, passive avoidance and Morris water maze.

Conclusions

Collectively, these studies provide evidence that a continuous increase in brain KYNA levels during the late prenatal period, but not during adolescence, induces hippocampus-related cognitive dysfunctions later in life. Such increases may play a significant role in illnesses with known hippocampal pathophysiology, including SZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akagbosu CO, Evans GC, Gulick D, Suckow RF, Bucci DJ (2012) Exposure to kynurenic acid during adolescence produces memory deficits in adulthood. Schizophr Bull 38:769–778

    Article  PubMed Central  PubMed  Google Scholar 

  • Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander KS, Wu HQ, Schwarcz R, Bruno JP (2012) Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology (Berl) 220:627–637

    Article  CAS  Google Scholar 

  • Alexander KS, Pocivavsek A, Wu HQ, Pershing ML, Schwarcz R, Bruno JP (2013) Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience 238:19–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoyama N, Takahashi N, Saito S, Maeno N, Ishihara R, Ji X, Miura H, Ikeda M, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, Yoshida K, Iwata N, Inada T, Ozaki N (2006) Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population. Genes Brain Behav 5:364–368

    Article  CAS  PubMed  Google Scholar 

  • Asp L, Holtze M, Powell SB, Karlsson H, Erhardt S (2010) Neonatal infection with neurotropic influenza A virus induces the kynurenine pathway in early life and disrupts sensorimotor gating in adult Tap1−/− mice. Int J Neuropsychopharmacol 13:475–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, Nemeroff CB, Reyes TM, Simerly RB, Susser ES, Nestler EJ (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319

    Article  PubMed Central  PubMed  Google Scholar 

  • Beal MF, Swartz KJ, Isacson O (1992) Developmental changes in brain kynurenic acid concentrations. Brain Res Dev Brain Res 68:136–139

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA, and AMPA receptors: a developmentally regulated ‘menage a trois’. Trends Neurosci 20:523–529

    Article  CAS  PubMed  Google Scholar 

  • Bortz DM, Schwarcz R, Bruno JP (2013) Mesolimbic regulation of prefrontal glutamate release is blocked by local kynurenic acid and restored with oral administration of a KAT II inhibitor. Soc Neurosci Abstr 38:255.12

    Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Bruno JP, Vunck S, Pershing M, Pocivavsek A, Bortz D, Jorgensen C, Fredericks P, Leuner B, Schwarcz R (2013) Elevations of brain kynurenic acid in prenatal rats result in long-lasting impairments in cortical development and cognitive flexibility: implications for schizophrenia. Neuropsychopharmacology 38:S108–S109

    Article  Google Scholar 

  • Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  CAS  PubMed  Google Scholar 

  • Castle D, Sham P, Murray R (1998) Differences in distribution of ages of onset in males and females with schizophrenia. Schizophr Res 33:179–183

    Article  CAS  PubMed  Google Scholar 

  • Ceresoli-Borroni G, Schwarcz R (2000) Perinatal kynurenine pathway metabolism in the normal and asphyctic rat brain. Amino Acids 19:311–323

    Article  CAS  PubMed  Google Scholar 

  • Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33:797–804

    Article  PubMed Central  PubMed  Google Scholar 

  • Chess AC, Landers AM, Bucci DJ (2009) l-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res 201:325–331

    Article  CAS  PubMed  Google Scholar 

  • DeLisi LE (2008) The concept of progressive brain change in schizophrenia: implications for understanding schizophrenia. Schizophr Bull 34:312–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122:125–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56:255–260

    Article  CAS  PubMed  Google Scholar 

  • Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellstrom-Lindahl E (2002) The alpha7 nicotinic receptors in human fetal brain and spinal cord. J Neurochem 80:457–465

    Article  CAS  PubMed  Google Scholar 

  • Forrest CM, Khalil OS, Pisar M, Darlington LG, Stone TW (2013a) Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Res 1504:1–15

    Article  CAS  PubMed  Google Scholar 

  • Forrest CM, Khalil OS, Pisar M, McNair K, Kornisiuk E, Snitcofsky M, Gonzalez N, Jerusalinsky D, Darlington LG, Stone TW (2013b) Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience 254:241–259

    Google Scholar 

  • Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R (2007) Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55:78–92

    Article  PubMed  Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  • Holtze M, Asp L, Karlsson H, Engberg G, Erhardt S (2010) Behavioral disturbances in adult mice following neonatal influenza infection—possibly induced by a transient elevation of brain kynurenic acid levels. Soc Neurosci Abstr 35:363.6

    Google Scholar 

  • Holtze M, Saetre P, Erhardt S, Schwieler L, Werge T, Hansen T, Nielsen J, Djurovic S, Melle I, Andreassen OA, Hall H, Terenius L, Agartz I, Engberg G, Jönsson EG, Schalling M (2011) Kynurenine 3-monooxygenase (KMO) polymorphisms in schizophrenia: an association study. Schizophr Res 127:270–272

    Article  PubMed  Google Scholar 

  • Huntley GW, Vickers JC, Morrison JH (1994) Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function, and disease. Trends Neurosci 17:536–543

    Article  CAS  PubMed  Google Scholar 

  • Iaccarino HF, Suckow RF, Xie S, Bucci DJ (2013) The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: implications for schizophrenia. Schizophr Res 150:392–397

    Article  PubMed  Google Scholar 

  • Jantzie LL, Talos DM, Jackson MC, Park HK, Graham DA, Lechpammer M, Folkerth RD, Volpe JJ, Jensen FE (2014) Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. Cereb Cortex, in press

  • Kapoor A, Kostaki A, Janus C, Matthews SG (2009) The effects of prenatal stress on learning in adult offspring is dependent on the timing of the stressor. Behav Brain Res 197:144–149

    Article  PubMed  Google Scholar 

  • Kiank C, Zeden JP, Drude S, Domanska G, Fusch G, Otten W, Schuett C (2010) Psychological stress-induced, IDO1-dependent tryptophan catabolism: implications on immunosuppression in mice and humans. PLoS One 5:e11825

    Article  PubMed Central  PubMed  Google Scholar 

  • Kinney DK, Hintz K, Shearer EM, Barch DH, Riffin C, Whitley K, Butler R (2010) A unifying hypothesis of schizophrenia: abnormal immune system development may help explain roles of prenatal hazards, post-pubertal onset, stress, genes, climate, infections, and brain dysfunction. Med Hypotheses 74:555–563

    Article  CAS  PubMed  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 184:523–539

    Article  CAS  Google Scholar 

  • Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, Bilder R (2001) Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 49:487–499

    Article  CAS  PubMed  Google Scholar 

  • Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432

    Article  PubMed Central  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2009) Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav Brain Res 204:306–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012) Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J Neurosci 32:7651–7661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer U (2014) Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75:307–315

    Google Scholar 

  • Meyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285–326

    Article  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 1073–1074:25–37

    Article  PubMed  Google Scholar 

  • Miura H, Ando Y, Noda Y, Isobe K, Ozaki N (2011) Long-lasting effects of inescapable-predator stress on brain tryptophan metabolism and the behavior of juvenile mice. Stress 14:262–272

    CAS  PubMed  Google Scholar 

  • Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133–139

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Murray RM, Lewis SW (1987) Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 295:681–682

    Article  CAS  Google Scholar 

  • Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322

    Article  CAS  PubMed  Google Scholar 

  • Pershing ML, Bortz D, Pocivavsek A, Fredericks PJ, Leuner B, Jørgensen CV, Schwarcz R, Bruno JP (2013) Prenatal kynurenic acid elevation alters cortical development and prefrontal glutamate release, corresponding to cognitive inflexibility in adults. Soc Neurosci Abstr 38:255.11

    Google Scholar 

  • Pocivavsek A, Wu HQ, Potter MC, Elmer GI, Pellicciari R, Schwarcz R (2011) Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 36:2357–2367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pocivavsek A, Wu HQ, Elmer GI, Bruno JP, Schwarcz R (2012) Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur J Neurosci 35:1605–1612

    Article  PubMed Central  PubMed  Google Scholar 

  • Pocivavsek A, Thomas MAR, Elmer GI, Bruno JP, Schwarcz R (2013) Chronic prenatal kynurenine elevation in rats: a naturalistic model of schizophrenia with biochemical abnormalities and deficits in hippocampal-mediated learning and memory. Soc Neurosci Abstr 38:255.10

    Google Scholar 

  • Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robbins TW, Murphy ER (2006) Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 27:141–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Röver S, Cesura AM, Huguenin P, Kettler R, Szente A (1997) Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem 40:4378–4385

    Article  PubMed  Google Scholar 

  • Russo P, Taly A (2012) Alpha 7-nicotinic acetylcholine receptors: an old actor for new different roles. Curr Drug Targets 13:574–578

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1991) Chronic effects of gamma-interferon on quinolinic acid and indoleamine-2,3-dioxygenase in brain of C57BL6 mice. Brain Res 546:151–154

    Article  CAS  PubMed  Google Scholar 

  • Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R (2011) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 37:1147–1156

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shepard PD, Joy B, Clerkin L, Schwarcz R (2003) Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 28:1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518

    Article  PubMed  Google Scholar 

  • Stone TW, Stoy N, Darlington LG (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 34:136–143

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva OA, Levin ED (2011) Glutamate and nicotinic receptor interactions in working memory: importance for the cognitive impairment of schizophrenia. Neuroscience 195:21–36

    Article  CAS  PubMed  Google Scholar 

  • Trecartin KV, Bucci DJ (2011) Administration of kynurenine during adolescence, but not during adulthood, impairs social behavior in rats. Schizophr Res 133:156–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Ultanir SK, Kim JE, Hall BJ, Deerinck T, Ellisman M, Ghosh A (2007) Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci U S A 104:19553–19558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Os J, Selten JP (1998) Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry 172:324–326

    Article  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  • Widner B, Ledochowski M, Fuchs D (2000) Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab 1:193–204

    Article  CAS  PubMed  Google Scholar 

  • Wonodi I, Schwarcz R (2010) Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull 36:211–218

    Article  PubMed Central  PubMed  Google Scholar 

  • Wonodi I, Stine OC, Sathyasaikumar KV, Roberts RC, Mitchell BD, Hong LE, Kajii Y, Thaker GK, Schwarcz R (2011) Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch Gen Psychiatry 68:665–674

    Article  CAS  PubMed  Google Scholar 

  • Wu HQ, Pereira EF, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R (2010) The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 40:204–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu HQ, Okuyama M, Kajii Y, Pocivavsek A, Bruno JP, Schwarcz R (2014) Targeting kynurenine aminotransferase II in psychiatric diseases: promising effects of an orally active enzyme inhibitor. Schizophr Bull 40 Suppl 2:S152–S158

    Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS grant MH83729 to JPB and RS.

Conflict of interest

No conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schwarcz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pocivavsek, A., Thomas, M.A.R., Elmer, G.I. et al. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology 231, 2799–2809 (2014). https://doi.org/10.1007/s00213-014-3452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3452-2

Keywords

Navigation