Skip to main content

Advertisement

Log in

Surgical debridement with retention of spinal instrumentation and long-term antimicrobial therapy for multidrug-resistant surgical site infections after spinal surgery: a case series

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Post-operative surgical site infection (SSI) is one of the most significant complications after instrumented spinal surgery. However, implant retention feasibility for early-onset multidrug-resistant SSI is still controversial. We aimed to verify our therapeutic strategy, surgical debridement with implant retention and long-term antimicrobial therapy for post-operative early-onset multidrug-resistant SSI.

Methods

We retrospectively analyzed the clinical course of 11 cases [eight men and three women, with a mean age of 70.4 (54–82) years] with early-onset multidrug-resistant SSI out of 409 consecutive cases of spinal instrumentation surgery performed between 2007 and 2013 at our institution.

Results

The median duration of follow-up was 868 (178–1,922) days. All SSIs were controlled, without recurrence during follow-up. The microbial pathogens were methicillin-resistant Staphylococcus aureus (seven cases), multidrug-resistant Corynebacterium (two cases), methicillin-resistant Staphylococcus epidermidis (one case), and methicillin-resistant coagulase-negative Staphylococcus aureus (one case). The mean duration from SSI diagnosis to surgery was 2.9 (1–6) days. Ten patients underwent surgical debridement with implant retention. No patients required multiple operations. All patients were given antimicrobial treatments. Mean duration of intravenous antimicrobials (vancomycin, vancomycin+ piperacillin/tazobactam, or gentamicin) was 66.5 (12–352) days and 336 (89–1,673) days for oral antimicrobials (rifampicin + sulfamethoxazole/trimethoprim, sulfamethoxazole/trimethoprim, or minomycin). The mean duration of clinical signs and symptom recovery was 31.0 (7–73) days, and the mean time for normalization of C-reactive protein was 54.5 (7–105) days.

Conclusions

Early-onset multidrug-resistant SSI was successfully treated by surgical debridement with implant retention and long-term antimicrobial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hedequist D, Haugen A, Hresko T, Emans J (2009) Failure of attempted implant retention in spinal deformity delayed surgical site infections. Spine 34:60–64. doi:10.1097/BRS.0b013e31818ed75e

    Article  PubMed  Google Scholar 

  2. Mok JM, Guillaume TJ, Talu U, Berven SH, Deviren V, Kroeber M, Bradford DS, Hu SS (2009) Clinical outcome of deep wound infection after instrumented posterior spinal fusion: a matched cohort analysis. Spine 34:578–583. doi:10.1097/BRS.0b013e31819a827c

    Article  PubMed  Google Scholar 

  3. Weinstein MA, McCabe JP, Cammisa FP Jr (2000) Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord 13:422–426

    Article  CAS  PubMed  Google Scholar 

  4. Pull ter Gunne AF, van Laarhoven CJ, Cohen DB (2010) Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk. Eur Spine J 19:982–988. doi:10.1007/s00586-009-1269-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Glassman SD, Dimar JR, Puno RM, Johnson JR (1996) Salvage of instrumental lumbar fusions complicated by surgical wound infection. Spine 21:2163–2169

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed R, Greenlee JD, Traynelis VC (2012) Preservation of spinal instrumentation after development of postoperative bacterial infections in patients undergoing spinal arthrodesis. J Spinal Disord Tech 25:299–302. doi:10.1097/BSD.0b013e31821fbf72

    Article  PubMed  Google Scholar 

  7. Kowalski TJ, Berbari EF, Huddleston PM, Steckelberg JM, Mandrekar JN, Osmon DR (2007) The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis 44:913–920. doi:10.1086/512194

    Article  PubMed  Google Scholar 

  8. Viola RW, King HA, Adler SM, Wilson CB (1997) Delayed infection after elective spinal instrumentation and fusion. A retrospective analysis of eight cases. Spine 22:2444–2450, discussion 2450–2441

    Article  CAS  PubMed  Google Scholar 

  9. Rihn JA, Lee JY, Ward WT (2008) Infection after the surgical treatment of adolescent idiopathic scoliosis: evaluation of the diagnosis, treatment, and impact on clinical outcomes. Spine 33:289–294. doi:10.1097/BRS.0b013e318162016e

    Article  PubMed  Google Scholar 

  10. Bachy M, Bouyer B, Vialle R (2012) Infections after spinal correction and fusion for spinal deformities in childhood and adolescence. Int Orthop 36:465–469. doi:10.1007/s00264-011-1439-8

    Article  PubMed  Google Scholar 

  11. Gerometta A, Rodriguez Olaverri JC, Bitan F (2012) Infections in spinal instrumentation. Int Orthop 36:457–464. doi:10.1007/s00264-011-1426-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meredith DS, Kepler CK, Huang RC, Brause BD, Boachie-Adjei O (2012) Postoperative infections of the lumbar spine: presentation and management. Int Orthop 36:439–444. doi:10.1007/s00264-011-1427-z

    Article  PubMed  Google Scholar 

  13. Quaile A (2012) Infections associated with spinal implants. Int Orthop 36:451–456. doi:10.1007/s00264-011-1408-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nunez-Pereira S, Pellise F, Rodriguez-Pardo D, Pigrau C, Bago J, Villanueva C, Caceres E (2013) Implant survival after deep infection of an instrumented spinal fusion. Bone Jt J 95-B:1121–1126. doi:10.1302/0301-620X.95B8.30784

    Article  CAS  Google Scholar 

  15. Hong HS, Chang MC, Liu CL, Chen TH (2008) Is aggressive surgery necessary for acute postoperative deep spinal wound infection? Spine 33:2473–2478. doi:10.1097/BRS.0b013e3181894ff0

    Article  CAS  PubMed  Google Scholar 

  16. Ammerlaan HS, Kluytmans JA, Wertheim HF, Nouwen JL, Bonten MJ (2009) Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis 48:922–930. doi:10.1086/597291

    Article  CAS  PubMed  Google Scholar 

  17. Falagas ME, Bliziotis IA, Fragoulis KN (2007) Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am J Infect Control 35:106–114. doi:10.1016/j.ajic.2006.09.005

    Article  PubMed  Google Scholar 

  18. Samuel JR, Gould FK (2010) Prosthetic joint infections: single versus combination therapy. J Antimicrob Chemother 65:18–23. doi:10.1093/jac/dkp398

    Article  CAS  PubMed  Google Scholar 

  19. Walsh TJ, Standiford HC, Reboli AC, John JF, Mulligan ME, Ribner BS, Montgomerie JZ, Goetz MB, Mayhall CG, Rimland D et al (1993) Randomized double-blinded trial of rifampin with either novobiocin or trimethoprim-sulfamethoxazole against methicillin-resistant Staphylococcus aureus colonization: prevention of antimicrobial resistance and effect of host factors on outcome. Antimicrob Agents Chemother 37:1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adra M, Lawrence KR (2004) Trimethoprim/sulfamethoxazole for treatment of severe Staphylococcus aureus infections. Ann Pharmacother 38:338–341. doi:10.1345/aph.1D156

    Article  CAS  PubMed  Google Scholar 

  21. Stein A, Bataille JF, Drancourt M, Curvale G, Argenson JN, Groulier P, Raoult D (1998) Ambulatory treatment of multidrug-resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob Agents Chemother 42:3086–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Elwell LP, Wilson HR, Knick VB, Keith BR (1986) In vitro and in vivo efficacy of the combination trimethoprim-sulfamethoxazole against clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 29:1092–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nemoto T, Yamasaki Y, Torikai K, Ishii O, Fujitani S, Matsuda T (2012) A case of MRSA infection in multiple artificial joints successfully treated with conservative medical treatment. Kansenshogaku Zasshi 86:411–414

    Article  PubMed  Google Scholar 

  24. Fujino T, Amari Y, Mohri M, Noma M, Yamamoto H (2009) MRSA tricuspid valve infective endocarditis with multiple embolic lung abscesses treated by combination therapy of vancomycin, rifampicin, and sulfamethoxazole/trimethoprim. J Cardiol 53:146–149. doi:10.1016/j.jjcc.2008.06.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Keyra Martinez, of Edanz Group Ltd., for her editorial assistance during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Kakutani.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, S., Kakutani, K., Maeno, K. et al. Surgical debridement with retention of spinal instrumentation and long-term antimicrobial therapy for multidrug-resistant surgical site infections after spinal surgery: a case series. International Orthopaedics (SICOT) 40, 1171–1177 (2016). https://doi.org/10.1007/s00264-015-3073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-3073-3

Keywords

Navigation