Skip to main content
Log in

Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

While the biological substrates of brain and behavioural changes in persons with schizophrenia remain unclear, increasing evidence implicates that inflammation is involved. In schizophrenia, including first-episode psychosis and anti-psychotic naïve patients, there are numerous reports of increased peripheral inflammation, cognitive deficits and neuropathologies such as cortical thinning. Research defining the relationship between inflammation and schizophrenia symptomatology and neuropathology is needed. Therefore, we analysed the level of C-reactive protein (CRP), a peripheral inflammation marker, and its relationship with cognitive functioning in a cohort of 644 controls and 499 schizophrenia patients. In a subset of individuals who underwent MRI scanning (99 controls and 194 schizophrenia cases), we tested if serum CRP was associated with cortical thickness. CRP was significantly increased in schizophrenia patients compared to controls, co-varying for age, sex, overweight/obesity and diabetes (p < 0.006E-10). In schizophrenia, increased CRP was mildly associated with worse performance in attention, controlling for age, sex and education (R =− 0.15, p = 0.001). Further, increased CRP was associated with reduced cortical thickness in three regions related to attention: the caudal middle frontal, the pars opercularis and the posterior cingulate cortices, which remained significant after controlling for multiple comparisons (all p < 0.05). Together, these findings indicate that increased peripheral inflammation is associated with deficits in cognitive function and brain structure in schizophrenia, especially reduced attention and reduced cortical thickness in associated brain regions. Using CRP as a biomarker of peripheral inflammation in persons with schizophrenia may help to identify vulnerable patients and those that may benefit from adjunctive anti-inflammatory treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets from the current study are not publicly available due to ethics approval.

References

  1. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10(11):643–660. https://doi.org/10.1038/nrneurol.2014.187

    Article  CAS  PubMed  Google Scholar 

  2. Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  CAS  Google Scholar 

  3. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/S2215-0366(14)00122-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Misiak B, Stanczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D (2018) Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophr Res 192:16–29. https://doi.org/10.1016/j.schres.2017.04.015

    Article  PubMed  Google Scholar 

  5. Yap SH, Moshage HJ, Hazenberg BPC, Roelofs HMJ, Bijzet J, Limburg PC, Aarden LA, Van Rijswijk MH (1991) Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes. Biochem Biophys Acta 1091(3):405–408

    Article  CAS  Google Scholar 

  6. Coventry BJ, Ashdown ML, Quinn MA, Markovic SN, Yatomi-Clarke SL, Robinson AP (2009) CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? J Transl Med 7:102. https://doi.org/10.1186/1479-5876-7-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fond G, Lancon C, Auquier P, Boyer L (2018) C-reactive protein as a peripheral biomarker in schizophrenia. An updated systematic review. Front Psychiatry 9:392. https://doi.org/10.3389/fpsyt.2018.00392

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fernandes BS, Steiner J, Bernstein HG, Dodd S, Pasco JA, Dean OM, Nardin P, Gonçalves CA, Berk M (2015) C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry 21(4):554–564. https://doi.org/10.1038/mp.2015.87

    Article  CAS  PubMed  Google Scholar 

  9. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709. https://doi.org/10.1038/mp.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11(8):973–984. https://doi.org/10.2174/1381612053381684

    Article  CAS  PubMed  Google Scholar 

  11. Spencer JI, Bell JS, DeLuca GC (2018) Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. J Neurol Neurosurg Psychiatry 89(1):42–52. https://doi.org/10.1136/jnnp-2017-316011

    Article  PubMed  Google Scholar 

  12. Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ (2018) The blood–brain barrier in psychosis. Lancet Psychiatry 5(1):79–92. https://doi.org/10.1016/s2215-0366(17)30293-6

    Article  PubMed  Google Scholar 

  13. Bulzacka E, Boyer L, Schurhoff F, Godin O, Berna F, Brunel L, Andrianarisoa M, Aouizerate B, Capdevielle D, Chereau-Boudet I, Chesnoy-Servanin G, Danion JM, Dubertret C, Dubreucq J, Faget C, Gabayet F, Le Gloahec T, Llorca PM, Mallet J, Misdrahi D, Rey R, Richieri R, Passerieux C, Roux P, Yazbek H, Leboyer M, Fond G, Group F-S (2016) Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull 42(5):1290–1302. https://doi.org/10.1093/schbul/sbw029

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 93(1–3):261–265. https://doi.org/10.1016/j.schres.2007.03.022

    Article  PubMed  Google Scholar 

  15. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bora E (2019) Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med 49(12):1971–1979. https://doi.org/10.1017/S0033291719001685

    Article  PubMed  Google Scholar 

  17. Jacomb I, Stanton C, Vasudevan R, Powell H, O’Donnell M, Lenroot R, Bruggemann J, Balzan R, Galletly C, Liu D, Weickert CS, Weickert TW (2018) C-reactive protein: higher during acute psychotic episodes and related to cortical thickness in schizophrenia and healthy controls. Front Immunol 9:2230. https://doi.org/10.3389/fimmu.2018.02230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Catts VS, Sheedy D, McCrossin T, Kril JJ, Weickert CS (2016) Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl psychiatry 6(12):e982. https://doi.org/10.1038/tp.2016.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kudo N, Yamamori H, Ishima T, Nemoto K, Yasuda Y, Fujimoto M, Azechi H, Niitsu T, Numata S, Ikeda M, Iyo M, Ohmori T, Fukunaga M, Watanabe Y, Hashimoto K, Hashimoto R (2018) Plasma levels of soluble tumor necrosis factor receptor 2 (sTNFR2) are associated with hippocampal volume and cognitive performance in patients with schizophrenia. Int J Neuropsychopharmacol 21(7):631–639. https://doi.org/10.1093/ijnp/pyy013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, Weickert CS (2016) Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry 21(8):1090–1098. https://doi.org/10.1038/mp.2015.90

    Article  CAS  PubMed  Google Scholar 

  21. Lesh TA, Careaga M, Rose DR, McAllister AK, Van de Water J, Carter CS (2018) Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation 15(1):165. https://doi.org/10.1186/s12974-018-1197-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalmady SV, Venkatasubramanian G, Shivakumar V, Gautham S, Subramaniam A, Jose DA, Maitra A, Ravi V, Gangadhar BN (2014) Relationship between interleukin-6 gene polymorphism and hippocampal volume in antipsychotic-naive schizophrenia: evidence for differential susceptibility? PLoS ONE. https://doi.org/10.1371/journal.pone

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mondelli V, Cattaneo A, Murri MB, Di Forti M, Handley R, Hepgul N, Miorelli A, Navari S, Papadopoulos AS, Aitchison KJ, Morgan C, Murray RM, Dazzan P, Pariante CM (2011) Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry 72(12):1677–1684. https://doi.org/10.4088/JCP.10m06745

    Article  PubMed  PubMed Central  Google Scholar 

  24. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146. https://doi.org/10.1016/j.neuroimage.2009.12.028

    Article  PubMed  Google Scholar 

  25. Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, Sprooten E, Jahanshad N, Thompson PM, Johnson MP, Kent JW Jr, Landman BA, Mitchell B, Cole SA, Dyer TD, Moses EK, Goring HH, Almasy L, Duggirala R, Olvera RL, Glahn DC, Blangero J (2013) Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage 82:273–283. https://doi.org/10.1016/j.neuroimage.2013.05.066

    Article  CAS  PubMed  Google Scholar 

  26. van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Bustillo JR, Clark VP, Agartz I, Mueller BA, Cahn W, de Zwarte SMC, Hulshoff Pol HE, Kahn RS, Ophoff RA, van Haren NEM, Andreassen OA, Dale AM, Doan NT, Gurholt TP, Hartberg CB, Haukvik UK, Jorgensen KN, Lagerberg TV, Melle I, Westlye LT, Gruber O, Kraemer B, Richter A, Zilles D, Calhoun VD, Crespo-Facorro B, Roiz-Santianez R, Tordesillas-Gutierrez D, Loughland C, Carr VJ, Catts S, Cropley VL, Fullerton JM, Green MJ, Henskens FA, Jablensky A, Lenroot RK, Mowry BJ, Michie PT, Pantelis C, Quide Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Shannon Weickert C, Weickert TW, Morris DW, Hong E, Kochunov P, Beard LM, Gur RE, Gur RC, Satterthwaite TD, Wolf DH, Belger A, Brown GG, Ford JM, Macciardi F, Mathalon DH, O’Leary DS, Potkin SG, Preda A, Voyvodic J, Lim KO, McEwen S, Yang F, Tan Y, Tan S, Wang Z, Fan F, Chen J, Xiang H, Tang S, Guo H, Wan P, Wei D, Bockholt HJ, Ehrlich S, Wolthusen RPF, King MD, Shoemaker JM, Sponheim SR, De Haan L, Koenders L, Machielsen MW, van Amelsvoort T, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, McKenna PJ, Pomarol-Clotet E, Salvador R, Corvin A, Donohoe G, Kelly S, Whelan CD, Dickie EW, Rotenberg D, Voineskos AN, Ciufolini S, Radua J, Dazzan P, Murray R, Reis Marques T, Simmons A, Borgwardt S, Egloff L, Harrisberger F, Riecher-Rossler A, Smieskova R, Alpert KI, Wang L, Jonsson EG, Koops S, Sommer IEC, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Stephen JM, Kwon JS, Yun JY, Cannon DM, McDonald C, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Karolinska Schizophrenia P, Busatto GF, Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, Hagenaars SP, McIntosh AM, Whalley HC, Lawrie SM, Knochel C, Oertel-Knochel V, Stablein M, Howells FM, Stein DJ, Temmingh HS, Uhlmann A, Lopez-Jaramillo C, Dima D, McMahon A, Faskowitz JI, Gutman BA, Jahanshad N, Thompson PM, Turner JA (2018) Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry 84(9):644–654. https://doi.org/10.1016/j.biopsych.2018.04.023

    Article  PubMed  PubMed Central  Google Scholar 

  27. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, Sevy S, Wang Y, Schrock K, Bilder RM (2005) Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58(1):32–40. https://doi.org/10.1016/j.biopsych.2005.03.043

    Article  PubMed  Google Scholar 

  28. Venkatasubramanian G, Jayakumar PN, Gangadhar BN, Keshavan MS (2008) Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naive schizophrenia. Acta Psychiatr Scand 117(6):420–431. https://doi.org/10.1111/j.1600-0447.2008.01198.x

    Article  CAS  PubMed  Google Scholar 

  29. Crespo-Facorro B, Roiz-Santianez R, Perez-Iglesias R, Rodriguez-Sanchez JM, Mata I, Tordesillas-Gutierrez D, Sanchez E, Tabares-Seisdedos R, Andreasen N, Magnotta V, Vazquez-Barquero JL (2011) Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychol Med 41(7):1449–1460. https://doi.org/10.1017/S003329171000200X

    Article  CAS  PubMed  Google Scholar 

  30. Cannon TD, Chung Y, He G, Sun DQ, Jacobson A, van Erp TGM, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R, S NAPL (2015) Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 77(2):147–157. https://doi.org/10.1016/j.biopsych.2014.05.023

    Article  PubMed  Google Scholar 

  31. Hartberg CB, Lawyer G, Nyman H, Jonsson EG, Haukvik UK, Saetre P, Bjerkan PS, Andreassen OA, Hall H, Agartz I (2010) Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Res 182(2):123–133. https://doi.org/10.1016/j.pscychresns.2010.01.001

    Article  PubMed  Google Scholar 

  32. Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, Schulz SC, Gollub RL, Sponheim SR (2012) Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 38(5):1050–1062. https://doi.org/10.1093/schbul/sbr018

    Article  PubMed  Google Scholar 

  33. Hartberg CB, Sundet K, Rimol LM, Haukvik UK, Lange EH, Nesvag R, Dale AM, Melle I, Andreassen OA, Agartz I (2011) Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults. J Int Neuropsychol Soc 17(6):1080–1093. https://doi.org/10.1017/S1355617711001081

    Article  CAS  PubMed  Google Scholar 

  34. Van Rheenen TE, Cropley V, Zalesky A, Bousman C, Wells R, Bruggemann J, Sundram S, Weinberg D, Lenroot RK, Pereira A, Shannon Weickert C, Weickert TW, Pantelis C (2018) Widespread volumetric reductions in schizophrenia and schizoaffective patients displaying compromised cognitive abilities. Schizophr Bull 44(3):560–574. https://doi.org/10.1093/schbul/sbx109

    Article  PubMed  Google Scholar 

  35. Loughland C, Draganic D, McCabe K, Richards J, Nasir A, Allen J, Catts S, Jablensky A, Henskens F, Michie P, Mowry B, Pantelis C, Schall U, Scott R, Tooney P, Carr V (2010) Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. Aust N Z J Psychiatry 44(11):1029–1035. https://doi.org/10.3109/00048674.2010.501758

    Article  PubMed  Google Scholar 

  36. Randolph C, Tierney MC, Mohr E, Chase TN (1998) The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol 20(3):310–319. https://doi.org/10.1076/jcen.20.3.310.823

    Article  CAS  PubMed  Google Scholar 

  37. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055. https://doi.org/10.1073/pnas.200033797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  39. Meier-Ewert HK, Ridker PM, Rifai N, Price N, Dinges DF, Mullington JM (2001) Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem 47(3):426–430

    Article  CAS  Google Scholar 

  40. Zhang T, Li H, Stone WS, Woodberry KA, Seidman LJ, Tang Y, Guo Q, Zhuo K, Qian Z, Cui H, Zhu Y, Jiang L, Chow A, Tang Y, Li C, Jiang K, Yi Z, Xiao Z, Wang J (2015) Neuropsychological impairment in prodromal, first-episode, and chronic psychosis: assessing RBANS performance. PLoS ONE 10(5):e0125784. https://doi.org/10.1371/journal.pone.0125784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wells R, Swaminathan V, Sundram S, Weinberg D, Bruggemann J, Jacomb I, Cropley V, Lenroot R, Pereira AM, Zalesky A, Bousman C, Pantelis C, Weickert CS, Weickert TW (2015) The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes. NPJ Schizophr 1:15043. https://doi.org/10.1038/npjschz.2015.43

    Article  PubMed  PubMed Central  Google Scholar 

  42. Green MJ, Chia TY, Cairns MJ, Wu JQ, Tooney PA, Scott RJ, Carr VJ, Bank ASR (2014) Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia. J Psychiatr Res 49:43–50. https://doi.org/10.1016/j.jpsychires.2013.10.018

    Article  PubMed  Google Scholar 

  43. Nani A, Manuello J, Mancuso L, Liloia D, Costa T, Cauda F (2019) The neural correlates of consciousness and attention: two sister processes of the brain. Front Neurosci 13:1169. https://doi.org/10.3389/fnins.2019.01169

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zajkowska Z, Mondelli V (2014) First-episode psychosis: an inflammatory state? NeuroImmunoModulation 21(2–3):102–108. https://doi.org/10.1159/000356536

    Article  CAS  PubMed  Google Scholar 

  45. Wysokinski A, Margulska A, Strzelecki D, Kloszewska I (2015) Levels of C-reactive protein (CRP) in patients with schizophrenia, unipolar depression and bipolar disorder. Nord J Psychiatry 69(5):346–353. https://doi.org/10.3109/08039488.2014.984755

    Article  PubMed  Google Scholar 

  46. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2):206–214. https://doi.org/10.1038/mp.2012.110

    Article  CAS  PubMed  Google Scholar 

  47. Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U (2019) Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0434-0

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saha S, Chant D, Welham J, McGrath J (2005) A systematic review of the prevalence of schizophrenia. PLoS Med 2(5):e141. https://doi.org/10.1371/journal.pmed.0020141

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Kozloski M (2011) Sex differences in age trajectories of physiological dysregulation: inflammation, metabolic syndrome, and allostatic load. J Gerontol A Biol Sci Med Sci 66(5):493–500. https://doi.org/10.1093/gerona/glr003

    Article  PubMed  Google Scholar 

  50. Singh T, Newman AB (2011) Inflammatory markers in population studies of aging. Ageing Res Rev 10(3):319–329. https://doi.org/10.1016/j.arr.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  51. Kaur SS, Gonzales MM, Eagan DE, Goudarzi K, Tanaka H, Haley AP (2015) Inflammation as a mediator of the relationship between cortical thickness and metabolic syndrome. Brain Imaging Behav 9(4):737–743. https://doi.org/10.1007/s11682-014-9330-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Corlier F, Hafzalla G, Faskowitz J, Kuller LH, Becker JT, Lopez OL, Thompson PM, Braskie MN (2018) Systemic inflammation as a predictor of brain aging: contributions of physical activity, metabolic risk, and genetic risk. Neuroimage 172:118–129. https://doi.org/10.1016/j.neuroimage.2017.12.027

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2(4):531

    Article  Google Scholar 

  54. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, Weickert TW (2020) Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry 25(11):2860–2872. https://doi.org/10.1038/s41380-019-0401-9

    Article  PubMed  Google Scholar 

  55. Cohen RA, de la Monte S, Gongvatana A, Ombao H, Gonzalez B, Devlin KN, Navia B, Tashima KT (2011) Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. J Neuroimmunol 233(1–2):204–210. https://doi.org/10.1016/j.jneuroim.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  56. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T (2003) Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 61(1):76–80. https://doi.org/10.1212/01.wnl.0000073620.42047.d7

    Article  CAS  PubMed  Google Scholar 

  57. Teunissen CE, van Boxtel MP, Bosma H, Bosmans E, Delanghe J, De Bruijn C, Wauters A, Maes M, Jolles J, Steinbusch HW, de Vente J (2003) Inflammation markers in relation to cognition in a healthy aging population. J Neuroimmunol 134(1–2):142–150. https://doi.org/10.1016/s0165-5728(02)00398-3

    Article  CAS  PubMed  Google Scholar 

  58. Kogan S, Ospina LH, Mittal VA, Kimhy D (2020) The impact of inflammation on neurocognition and risk for psychosis: a critical review. Eur Arch Psychiatry Clin Neurosci 270(7):793–802. https://doi.org/10.1007/s00406-019-01073-2

    Article  PubMed  Google Scholar 

  59. Caspi A, Reichenberg A, Weiser M, Rabinowitzc J, Kaplan Z, Knobler H, Davidson-Sagi N, Davidson M (2003) Cognitive performance in schizophrenia patients assessed before and following the first psychotic episode. Schizophr Res 65(2–3):87–94. https://doi.org/10.1016/S0920-9964(03)00056-2

    Article  PubMed  Google Scholar 

  60. Lussier I, Stip E (2001) Memory and attention deficits in drug naive patients with schizophrenia. Schizophr Res 48(1):45–55. https://doi.org/10.1016/S0920-9964(00)00102-X

    Article  CAS  PubMed  Google Scholar 

  61. Culley DJ, Snayd M, Baxter MG, Xie Z, Lee IH, Rudolph J, Inouye SK, Marcantonio ER, Crosby G (2014) Systemic inflammation impairs attention and cognitive flexibility but not associative learning in aged rats: possible implications for delirium. Front Aging Neurosci 6:107. https://doi.org/10.3389/fnagi.2014.00107

    Article  PubMed  PubMed Central  Google Scholar 

  62. Holden JM, Meyers-Manor JE, Overmier JB, Gahtan E, Sweeney W, Miller H (2008) Lipopolysaccharide-induced immune activation impairs attention but has little effect on short-term working memory. Behav Brain Res 194(2):138–145. https://doi.org/10.1016/j.bbr.2008.06.032

    Article  CAS  PubMed  Google Scholar 

  63. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324. https://doi.org/10.1016/j.neuron.2008.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137(Pt 1):12–32. https://doi.org/10.1093/brain/awt162

    Article  PubMed  Google Scholar 

  65. Lekander M, Karshikoff B, Johansson E, Soop A, Fransson P, Lundstrom JN, Andreasson A, Ingvar M, Petrovic P, Axelsson J, Nilsonne G (2016) Intrinsic functional connectivity of insular cortex and symptoms of sickness during acute experimental inflammation. Brain Behav Immun 56:34–41. https://doi.org/10.1016/j.bbi.2015.12.018

    Article  PubMed  Google Scholar 

  66. Rosano C, Marsland AL, Gianaros PJ (2012) Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging. Aging Dis 3(1):16–33

    PubMed  Google Scholar 

  67. Silbert LC, Lahna D, Promjunyakul NO, Boespflug E, Ohya Y, Higashiuesato Y, Nishihira J, Katsumata Y, Tokashiki T, Dodge HH (2018) Risk factors associated with cortical thickness and white matter hyperintensities in dementia free okinawan elderly. J Alzheimers Dis 63(1):365–372. https://doi.org/10.3233/JAD-171153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, Pereira A, Di Biase MA, Weickert TW, Weickert CS, Pantelis C, Zalesky A (2017) Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry 174(3):286–295. https://doi.org/10.1176/appi.ajp.2016.16050610

    Article  PubMed  Google Scholar 

  69. Zhang W, Deng W, Yao L, Xiao Y, Li F, Liu J, Sweeney JA, Lui S, Gong Q (2015) Brain structural abnormalities in a group of never-medicated patients with long-term schizophrenia. Am J Psychiatry 172(10):995–1003. https://doi.org/10.1176/appi.ajp.2015.14091108

    Article  PubMed  Google Scholar 

  70. Hulshoff Pol HE, Schnack HG, Bertens MG, van Haren NE, van der Tweel I, Staal WG, Baare WF, Kahn RS (2002) Volume changes in gray matter in patients with schizophrenia. Am J Psychiatry 159(2):244–250. https://doi.org/10.1176/appi.ajp.159.2.244

    Article  PubMed  Google Scholar 

  71. Nenadic I, Sauer H, Smesny S, Gaser C (2012) Aging effects on regional brain structural changes in schizophrenia. Schizophr Bull 38(4):838–844. https://doi.org/10.1093/schbul/sbq140

    Article  PubMed  Google Scholar 

  72. Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437(1):57–67. https://doi.org/10.1111/nyas.13712

    Article  CAS  PubMed  Google Scholar 

  73. Chang HH, Lee IH, Gean PW, Lee SY, Chi MH, Yang YK, Lu RB, Chen PS (2012) Treatment response and cognitive impairment in major depression: association with C-reactive protein. Brain Behav Immun 26(1):90–95. https://doi.org/10.1016/j.bbi.2011.07.239

    Article  CAS  PubMed  Google Scholar 

  74. Dickerson F, Stallings C, Origoni A, Vaughan C, Khushalani S, Yolken R (2013) Elevated C-reactive protein and cognitive deficits in individuals with bipolar disorder. J Affect Disord 150(2):456–459. https://doi.org/10.1016/j.jad.2013.04.039

    Article  CAS  PubMed  Google Scholar 

  75. Opel N, Cearns M, Clark S, Toben C, Grotegerd D, Heindel W, Kugel H, Teuber A, Minnerup H, Berger K, Dannlowski U, Baune BT (2019) Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J Psychiatry Neurosci 44(6):423–431. https://doi.org/10.1503/jpn.180208

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chung KH, Huang SH, Wu JY, Chen PH, Hsu JL, Tsai SY (2013) The link between high-sensitivity C-reactive protein and orbitofrontal cortex in euthymic bipolar disorder. Neuropsychobiology 68(3):168–173

    Article  CAS  Google Scholar 

  77. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM (2019) Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med 49(12):1958–1970. https://doi.org/10.1017/S0033291719001454

    Article  PubMed  PubMed Central  Google Scholar 

  78. Miller AH, Raison CL (2015) Are anti-inflammatory therapies viable treatments for psychiatric disorders?: where the rubber meets the road. JAMA Psychiatry 72(6):527–528. https://doi.org/10.1001/jamapsychiatry.2015.22

    Article  PubMed  PubMed Central  Google Scholar 

  79. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41. https://doi.org/10.1001/2013.jamapsychiatry.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Australian Schizophrenia Research Bank (ASRB), which is supported by the National Health and Medical Research Council of Australia, the Pratt Foundation, Ramsay Health Care, the Viertel Charitable Foundation and the Schizophrenia Research Institute.

Funding

CSW is funded by the NSW Ministry of Health, Office of Health and Medical Research. CSW is a recipient of a National Health and Medical Research Council (Australia) Principal Research Fellowship (PRF) (#1117079). CSW is on an advisory board for Lundbeck, Australia Pty Ltd and in collaboration with Astellas Pharma Inc., Japan; however, neither of these are related to this study. VC was supported by a National Health and Medical Research Council (NHMRC) Investigator Grant (1177370). CP was supported by a NHMRC Senior Principal Research Fellowship (1105825).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: HFN and CSW; methodology: all authors; formal analysis and investigation: HN, RL, VC, JB, TW, and CSW. Writing original draft preparation: HN and CSW; writing—review and editing: all authors; resources: VC, RL, CP, TWW, and CSW; supervision: CSW.

Corresponding author

Correspondence to Cynthia Shannon Weickert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This study was carried out in accordance with the Declaration of Helsinki after review at the University of New South Wales (HREC14265).

Consent to participate

All participants consented to participate in this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

North, H.F., Bruggemann, J., Cropley, V. et al. Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions. Eur Arch Psychiatry Clin Neurosci 271, 595–607 (2021). https://doi.org/10.1007/s00406-021-01237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01237-z

Keywords

Navigation