Skip to main content

Advertisement

Log in

Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Evidence suggests that bariatric surgery alters gut microbiota, although its impact at compositional and functional level is not well described. In this review, the most relevant findings, mainly described in Roux-en-Y gastric bypass and sleeve gastrectomy, are outlined. Although the number of studies has increased in the last years, conclusive assertions cannot be elaborated. An issue to address is to know the influence of these alterations on host metabolism and the contribution of gut microbiota derived metabolites. New lines of research have been focusing on analysing gut microbiota functionality rather than evaluating changes at compositional level, and the functions of gut microbiota metabolites in host metabolism, what will bring more relevant information about the influence of gut microbiota in bariatric surgery outcomes. Personalized medicine, because of the predictive value of gut microbiota, is another promising field. The possibility of a specific gut microbiota pattern that could predict type 2 diabetes remission or weight loss failure after bariatric surgery is a matter of great interest. However, little is known about how gut microbiota manipulation could contribute to the beneficial effects of bariatric surgery. Peri-operative antibiotics prophylaxis or probiotic supplementation early after surgery, are strategies barely studied so far, and could constitute a novel tool in the management of weight loss and metabolic profile improvement after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ACE:

Abundance-based coverage estimator

BCAAs:

Branched-chain amino acids

BCFAs:

Branched-chain fatty acids

BMI:

Body mass index

BSH:

Bile salt hydrolase

CA7S:

Cholic acid-7-sulfate

FMT:

Faecal microbiota transplantation

FXR:

Farnesoid X receptor

HbA1c:

Haemoglobin a1c

HOMA-IR:

Homeostasis model assessment of insulin resistance

LDL-cholesterol:

Low density lipoprotein cholesterol

MS:

Metabolic syndrome

PTS:

Phosphotransferase system

RYGB:

Roux-en-Y gastric bypass

SCFAs:

Short chain fatty acids

SG:

Sleeve gastrectomy

T2DM:

Type 2 diabetes mellitus

TGR5:

Takeda G protein-receptor 5

TMA:

Trimethylamine

TMAO:

Trimethylamine N-oxide

VBG:

Vertical banded gastroplasty

References

  1. World Health Organization. Fact sheet on obesity and overweight [Internet]. [cited 2019 Mar 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  2. Bray GA, Ryan DH. Evidence-based weight loss interventions: Individualized treatment options to maximize patient outcomes. Diabetes, Obes Metab [Internet]. Blackwell Publishing Ltd; 2020 [cited 2021 Feb 25];23 Suppl 1. Available from: https://pubmed.ncbi.nlm.nih.gov/32969147/

  3. Welbourn R, Hollyman M, Kinsman R, Dixon J, Liem R, Ottosson J, et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes Surg [Internet]. Springer New York LLC; 2019 [cited 2020 Nov 3];29:782–95. Available from: https://pubmed.ncbi.nlm.nih.gov/30421326/

  4. Xu G, Song M. Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery [Internet]. Surg. Obes. Relat. Dis. Elsevier Inc.; 2021 [cited 2021 Feb 25]. p. 231–8. Available from: https://pubmed.ncbi.nlm.nih.gov/33036939/

  5. Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L, Savastano S, et al. Gut microbiota: a new path to treat obesity. Int J Obes Suppl [Internet]. Springer Science and Business Media LLC; 2019 [cited 2020 Nov 3];9:10–9. Available from: https://pubmed.ncbi.nlm.nih.gov/31391921/

  6. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature [Internet]. Nature; 2013 [cited 2018 May 2];500:541–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23985870/

  7. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature [Internet]. Nature; 2009 [cited 2018 May 2];457:480–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19043404

  8. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature [Internet]. Nature; 2006 [cited 2017 Sep 11];444:1027–131. Available from: https://pubmed.ncbi.nlm.nih.gov/17183312/

  9. Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr [Internet]. American Society for Nutrition; 2017 [cited 2021 Feb 25];147:1468S-1475S. Available from: https://pubmed.ncbi.nlm.nih.gov/28615382/

  10. Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity [Internet]. FEMS Microbiol. Rev. FEMS Microbiol Rev; 2008 [cited 2021 Feb 25]. p. 557–78. Available from: https://pubmed.ncbi.nlm.nih.gov/18435746/

  11. Kong L-CC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot J-LL, et al. Gut microbiota after gastric bypass in human obesity: Increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr [Internet]. Am J Clin Nutr; 2013 [cited 2017 Oct 16];98:16–24. Available from: https://pubmed.ncbi.nlm.nih.gov/23719559/

  12. Assal K Al, Prifti E, Belda E, Sala P, Clément K, Dao MC, et al. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients [Internet]. MDPI AG; 2020 [cited 2021 Feb 25];12. Available from: https://pubmed.ncbi.nlm.nih.gov/31973130/

  13. Medina DA, Pedreros JP, Turiel D, Quezada N, Pimentel F, Escalona A, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ [Internet]. PeerJ Inc.; 2017 [cited 2021 Feb 25];2017. Available from: https://pubmed.ncbi.nlm.nih.gov/28649469/

  14. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med [Internet]. Nature Publishing Group; 2017 [cited 2021 Feb 25];23:859–68. Available from: https://pubmed.ncbi.nlm.nih.gov/28628112/

  15. Sanmiguel CP, Jacobs J, Gupta A, Ju T, Stains J, Coveleskie K, et al. Surgically Induced Changes in Gut Microbiome and Hedonic Eating as Related to Weight Loss: Preliminary Findings in Obese Women Undergoing Bariatric Surgery. Psychosom Med [Internet]. Lippincott Williams and Wilkins; 2017 [cited 2021 Feb 25];79:880–7. Available from: https://pubmed.ncbi.nlm.nih.gov/28570438/

  16. Palmisano S, Campisciano G, Silvestri M, Guerra M, Giuricin M, Casagranda B, et al. Changes in Gut Microbiota Composition after Bariatric Surgery: a New Balance to Decode. J Gastrointest Surg [Internet]. Springer; 2020 [cited 2021 Feb 25];24:1736–46. Available from: https://pubmed.ncbi.nlm.nih.gov/31388884/

  17. Ilhan ZE, DiBaise JK, Dautel SE, Isern NG, Kim YM, Hoyt DW, et al. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. npj Biofilms Microbiomes [Internet]. Nature Research; 2020 [cited 2021 Feb 25];6. Available from: https://pubmed.ncbi.nlm.nih.gov/32170068/

  18. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery [Internet]. Curr. Opin. Microbiol. Elsevier Ltd; 2018 [cited 2021 Feb 25]. p. 34–40. Available from: https://pubmed.ncbi.nlm.nih.gov/30036705/

  19. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Curr Obes Rep [Internet]. Springer Science and Business Media LLC; 2019 [cited 2021 Feb 25];8:317–32. Available from: https://pubmed.ncbi.nlm.nih.gov/31175629/

  20. Kim MH, Yun KE, Kim J, Park E, Chang Y, Ryu S, et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep [Internet]. Nature Research; 2020 [cited 2021 Feb 25];10. Available from: https://pubmed.ncbi.nlm.nih.gov/33173145/

  21. Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun [Internet]. Nature Research; 2020 [cited 2021 Feb 25];11. Available from: https://pubmed.ncbi.nlm.nih.gov/33060586/

  22. Dhakal S, McCormack L, Dey M. Association of the gut microbiota with weight-loss response within a retail weight-management program. Microorganisms [Internet]. MDPI AG; 2020 [cited 2021 Feb 25];8:1–20. Available from: https://pubmed.ncbi.nlm.nih.gov/32824364/

  23. Steinert RE, Rehman A, Souto Lima EJ, Agamennone V, Schuren FHJ, Gero D, et al. Roux-en-Y gastric bypass surgery changes fungal and bacterial microbiota in morbidly obese patients-A pilot study. PLoS One [Internet]. Public Library of Science; 2020 [cited 2021 Feb 25];15. Available from: https://pubmed.ncbi.nlm.nih.gov/32735609/

  24. Davies N, O’Sullivan JM, Plank LD, Murphy R. Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. Obes Surg [Internet]. Springer; 2020 [cited 2021 Feb 25];30:3536–48. Available from: https://pubmed.ncbi.nlm.nih.gov/32447634/

  25. Farin W, Oñate FP, Plassais J, Bonny C, Beglinger C, Woelnerhanssen B, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2020 [cited 2021 Feb 25];16:852–62. Available from: https://pubmed.ncbi.nlm.nih.gov/32360114/

  26. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: Correlation with inflammatory and metabolic parameters. Pharmacogenomics J [Internet]. Pharmacogenomics J; 2013 [cited 2021 Feb 25];13:514–22. Available from: https://pubmed.ncbi.nlm.nih.gov/23032991/

  27. Ikeda T, Aida M, Yoshida Y, Matsumoto S, Tanaka M, Nakayama J, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg [Internet]. John Wiley and Sons Ltd; 2020 [cited 2021 Feb 25];107:1673–85. Available from: https://pubmed.ncbi.nlm.nih.gov/32432347/

  28. Lee CJ, Florea L, Sears CL, Maruthur N, Potter JJ, Schweitzer M, et al. Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized Trial. Obes Surg [Internet]. Springer New York LLC; 2019 [cited 2021 Feb 25];29:3239–45. Available from: https://pubmed.ncbi.nlm.nih.gov/31256356/

  29. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med [Internet]. BioMed Central Ltd.; 2016 [cited 2017 Oct 16];8:67. Available from: http://genomemedicine.biomedcentral.com/articles/https://doi.org/10.1186/s13073-016-0312-1

  30. Patrone V, Vajana E, Minuti A, Callegari ML, Federico A, Loguercio C, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol [Internet]. Frontiers Media S.A.; 2016 [cited 2021 Feb 25];7. Available from: https://pubmed.ncbi.nlm.nih.gov/26941724/

  31. Sánchez-Alcoholado L, Gutiérrez-Repiso C, Gómez-Pérez AMAM, García-Fuentes E, Tinahones FJFJ, Moreno-Indias I. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2019 [cited 2020 Feb 9];15:1888–95. Available from: https://pubmed.ncbi.nlm.nih.gov/31648978/

  32. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A common factor in human diseases [Internet]. Biomed Res. Int. Hindawi Limited; 2017 [cited 2021 Feb 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/29230419/

  33. Porat D, Vaynshtein J, Gibori R, Avramoff O, Shaked G, Dukhno O, et al. Stomach pH before vs. after different bariatric surgery procedures: Clinical implications on drug delivery. Eur J Pharm Biopharm [Internet]. Elsevier BV; 2021 [cited 2021 Feb 25];160. Available from: https://pubmed.ncbi.nlm.nih.gov/33524534/

  34. Santacroce L, Charitos IA, Ballini A, Inchingolo F, Luperto P, De Nitto E, et al. The human respiratory system and its microbiome at a glimpse [Internet]. Biology (Basel). MDPI AG; 2020 [cited 2021 Feb 25]. p. 318. Available from: https://pubmed.ncbi.nlm.nih.gov/33019595/

  35. Chen G, Zhuang J, Cui Q, Jiang S, Tao W, Chen W, et al. Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obes Surg [Internet]. Springer; 2020 [cited 2021 Feb 25];30:2345–61. Available from: https://pubmed.ncbi.nlm.nih.gov/32152837/

  36. Schenck LP, Surette MG, Bowdish DME. Composition and immunological significance of the upper respiratory tract microbiota [Internet]. FEBS Lett. Wiley Blackwell; 2016 [cited 2021 Feb 25]. p. 3705–20. Available from: https://pubmed.ncbi.nlm.nih.gov/27730630/

  37. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev [Internet]. Blackwell Publishing Ltd; 2014 [cited 2021 Feb 25];38:996–1047. Available from: https://pubmed.ncbi.nlm.nih.gov/24861948/

  38. Duranti S, Longhi G, Ventura M, van Sinderen D, Turroni F. Exploring the ecology of bifidobacteria and their genetic adaptation to the mammalian gut [Internet]. Microorganisms. MDPI AG; 2021 [cited 2021 Feb 25]. p. 1–18. Available from: https://pubmed.ncbi.nlm.nih.gov/33375064/

  39. Cortez R V, Petry T, Caravatto P, Pessôa R, Sanabani SS, Martinez MB, et al. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2018 [cited 2021 Feb 25];14:1748–54. Available from: https://pubmed.ncbi.nlm.nih.gov/30174193/

  40. Geerlings S, Kostopoulos I, de Vos W, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms [Internet]. MDPI AG; 2018 [cited 2021 Feb 25];6:75. Available from: https://pubmed.ncbi.nlm.nih.gov/30041463/

  41. Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems [Internet]. Front. Microbiol. Frontiers Media S.A.; 2020 [cited 2021 Feb 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/32153527/

  42. Dao MC, Belda E, Prifti E, Everard A, Kayser BD, Bouillot JL, et al. Akkermansia muciniphila abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. Am J Physiol Endocrinol Metab [Internet]. NLM (Medline); 2019 [cited 2021 Feb 25];317:E446–59. Available from: https://pubmed.ncbi.nlm.nih.gov/31265324/

  43. Sanchez-Carrillo S, Ciordia S, Rojo D, Zubeldia-Varela E, Méndez-García C, Martínez-Martínez M, et al. A body weight loss- and health-promoting gut microbiota is established after bariatric surgery in individuals with severe obesity. J Pharm Biomed Anal [Internet]. Elsevier B.V.; 2021 [cited 2021 Feb 25];193. Available from: https://pubmed.ncbi.nlm.nih.gov/33217711/

  44. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab [Internet]. Cell Press; 2015 [cited 2017 Oct 16];22:228–38. Available from: https://pubmed.ncbi.nlm.nih.gov/26244932/

  45. Mabey JG, Chaston JM, Castro DG, Adams TD, Hunt SC, Davidson LE. Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2020 [cited 2021 Feb 25];16:1304–11. Available from: https://pubmed.ncbi.nlm.nih.gov/32466962/

  46. Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance [Internet]. Trends Microbiol. Elsevier Ltd; 2016 [cited 2021 Feb 25]. p. 402–13. Available from: https://pubmed.ncbi.nlm.nih.gov/26996765/

  47. Saier MH. The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery [Internet]. J. Mol. Microbiol. Biotechnol. S. Karger AG; 2015 [cited 2021 Feb 25]. p. 73–8. Available from: https://pubmed.ncbi.nlm.nih.gov/26159069/

  48. Davidson AL, Dassa E, Orelle C, Chen J. Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol Mol Biol Rev [Internet]. American Society for Microbiology; 2008 [cited 2021 Feb 25];72:317–64. Available from: https://pubmed.ncbi.nlm.nih.gov/18535149/

  49. Koh A, Bäckhed F. From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism [Internet]. Mol. Cell. Cell Press; 2020 [cited 2021 Feb 25]. p. 584–96. Available from: https://pubmed.ncbi.nlm.nih.gov/32234490/

  50. den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-JJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res [Internet]. J Lipid Res; 2013 [cited 2017 Oct 11];54:2325–40. Available from: http://www.jlr.org/lookup/doi/https://doi.org/10.1194/jlr.R036012

  51. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes [Internet]. Taylor and Francis Inc.; 2016 [cited 2017 Oct 11];7:189–200. Available from: https://pubmed.ncbi.nlm.nih.gov/26963409/

  52. Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients [Internet]. NLM (Medline); 2020 [cited 2020 Apr 29];12:802. Available from: https://pubmed.ncbi.nlm.nih.gov/32197409/

  53. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. Biomed Res Int [Internet]. Hindawi Publishing Corporation; 2015 [cited 2018 May 21];2015:806248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25710027

  54. Sowah SA, Riedl L, Damms-Machado A, Johnson TS, Schübel R, Graf M, Kartal E, Zeller G, Schwingshacki L, Stangl GI, Kaaks R KT. Effects of weight-loss interventions on short-chain fatty acids concentrarions in blood and feces of adults: A systematic review. Adv Nutrtition. 2019;673–84.

  55. Rios-Covian D, González S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, et al. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front Microbiol [Internet]. Frontiers Media S.A.; 2020 [cited 2021 Feb 25];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32547507/

  56. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol [Internet]. Transl Gastroenterol Hepatol; 2018 [cited 2021 Jul 12];3. Available from: https://pubmed.ncbi.nlm.nih.gov/30148232/

  57. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature [Internet]. Nature; 2016 [cited 2021 Jul 12];535:376–81. Available from: https://pubmed.ncbi.nlm.nih.gov/27409811/

  58. Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. Obes Surg [Internet]. Obes Surg; 2017 [cited 2021 Jul 12];27:1345–57. Available from: https://pubmed.ncbi.nlm.nih.gov/28265960/

  59. Barati-Boldaji R, Esmaeilinezhad Z, Babajafari S, Kazemi A, Clark CCT, Mazidi M, et al. Bariatric surgery reduces branched-chain amino acids’ levels: a systematic review and meta-analysis. Nutr Res [Internet]. Nutr Res; 2021 [cited 2021 Jul 12];87:80–90. Available from: https://pubmed.ncbi.nlm.nih.gov/33607391/

  60. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation [Internet]. Physiol. Rev. American Physiological Society; 2009 [cited 2021 Feb 25]. p. 147–91. Available from: https://pubmed.ncbi.nlm.nih.gov/19126757/

  61. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile acid receptors and gastrointestinal functions [Internet]. Liver Res. KeAi Communications Co.; 2019 [cited 2021 Feb 25]. p. 31–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32368358/

  62. Shen H, Ding L, Baig M, Tian J, Wang Y, Huang W. Improving glucose and lipids metabolism: Drug development based on bile acid related targets [Internet]. Cell Stress. Shared Science Publishers OG; 2021 [cited 2021 Mar 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/33447732/

  63. Ridlon JM, Kang D-JJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res [Internet]. J Lipid Res; 2006 [cited 2018 May 4];47:241–59. Available from: https://pubmed.ncbi.nlm.nih.gov/16299351/

  64. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome [Internet]. BioMed Central Ltd.; 2019 [cited 2021 Feb 25];7. Available from: https://pubmed.ncbi.nlm.nih.gov/30674356/

  65. Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health [Internet]. Food Res. Int. Elsevier Ltd; 2018 [cited 2021 Feb 25]. p. 250–62. Available from: https://pubmed.ncbi.nlm.nih.gov/30131136/

  66. Ahlin S, Cefalo C, Bondia-Pons I, Capristo E, Marini L, Gastaldelli A, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg [Internet]. John Wiley and Sons Ltd; 2019 [cited 2020 Mar 6];106:1178–86. Available from: https://pubmed.ncbi.nlm.nih.gov/31216062/

  67. Risstad H, Kristinsson JA, Fagerland MW, le Roux CW, Birkeland KI, Gulseth HL, et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2017 [cited 2021 Feb 25];13:1544–53. Available from: https://pubmed.ncbi.nlm.nih.gov/28756050/

  68. Chen Y, Lu J, Nemati R, Plank LD, Murphy R. Acute Changes of Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obes Surg [Internet]. Springer New York LLC; 2019 [cited 2021 Feb 25];29:3605–21. Available from: https://pubmed.ncbi.nlm.nih.gov/31273649/

  69. Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R. Increased Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Correlate with Improvement in Type 2 Diabetes in a Randomized Trial. Obes Surg [Internet]. Springer New York LLC; 2018 [cited 2021 Feb 25];28:2672–86. Available from: https://pubmed.ncbi.nlm.nih.gov/29987678/

  70. Escalona A, Muñoz R, Irribarra V, Solari S, Allende F, Francisco Miquel J. Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2016 [cited 2021 Feb 25];12:763–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26948941/

  71. Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, et al. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery. Gastroenterology [Internet]. Gastroenterology; 2019 [cited 2021 Jul 9];156:1041–1051.e4. Available from: https://pubmed.ncbi.nlm.nih.gov/30445014/

  72. Chaudhari SN, Luo JN, Harris DA, Aliakbarin H, Yao L, Paik D, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe [Internet]. Cell Host Microbe; 2021 [cited 2021 Jul 9];29:408–424.e7. Available from: https://pubmed.ncbi.nlm.nih.gov/33434516/

  73. Chaudhari SN, Harris DA, Aliakbarian H, Luo JN, Henke MT, Subramaniam R, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol [Internet]. Nat Chem Biol; 2021 [cited 2021 Jul 9];17:20–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32747812/

  74. Samczuk P, Luba M, Godzien J, Mastrangelo A, Hady HR, Dadan J, et al. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. J Pharm Biomed Anal [Internet]. Elsevier B.V.; 2018 [cited 2021 Feb 25];151:219–26. Available from: https://pubmed.ncbi.nlm.nih.gov/29413971/

  75. Narath SH, Mautner SI, Svehlikova E, Schultes B, Pieber TR, Sinner FM, et al. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PLoS One [Internet]. Public Library of Science; 2016 [cited 2021 Feb 25];11. Available from: https://pubmed.ncbi.nlm.nih.gov/27584017/

  76. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut [Internet]. BMJ Publishing Group; 2019 [cited 2021 Feb 25];68:70–82. Available from: https://pubmed.ncbi.nlm.nih.gov/29899081/

  77. Lopes TIB, Geloneze B, Pareja JC, Calixto AR, Ferreira MMC, Marsaioli AJ. Blood metabolome changes before and after bariatric surgery: A 1H NMR-based clinical investigation. Omi A J Integr Biol [Internet]. Mary Ann Liebert Inc.; 2015 [cited 2021 Feb 25];19:318–27. Available from: https://pubmed.ncbi.nlm.nih.gov/25871626/

  78. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int [Internet]. Elsevier B.V.; 2020 [cited 2021 Feb 25];97:1230–42. Available from: https://pubmed.ncbi.nlm.nih.gov/32317112/

  79. Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil [Internet]. Neurogastroenterol Motil; 2018 [cited 2021 Jul 9];30. Available from: https://pubmed.ncbi.nlm.nih.gov/28782205/

  80. Wang Y, Wang G, Bai J, Zhao N, Wang Q, Zhou R, et al. Role of Indole-3-Acetic Acid in NAFLD Amelioration After Sleeve Gastrectomy. Obes Surg [Internet]. Obes Surg; 2021 [cited 2021 Jul 9];31:3040–52. Available from: https://pubmed.ncbi.nlm.nih.gov/33973136/

  81. Kwon Y, Jang M, Lee Y, Ha J, Park S. Metabolomic Analysis of the Improvements in Insulin Secretion and Resistance After Sleeve Gastrectomy: Implications of the Novel Biomarkers. Obes Surg [Internet]. Obes Surg; 2021 [cited 2021 Jul 9];31:43–52. Available from: https://pubmed.ncbi.nlm.nih.gov/32815103/

  82. He M, Tan CP, Xu YJ, Liu Y. Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? [Internet]. Food Res. Int. Elsevier Ltd; 2020 [cited 2021 Feb 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/33288187/

  83. Abbasalizad Farhangi M, Vajdi M. Gut microbiota–associated trimethylamine N -oxide and increased cardiometabolic risk in adults: a systematic review and dose-response meta-analysis. Nutr Rev [Internet]. Oxford University Press (OUP); 2020 [cited 2021 Feb 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/33270896/

  84. Trøseid M, Hov JR, Nestvold TK, Thoresen H, Berge RK, Svardal A, et al. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab Syndr Relat Disord [Internet]. Mary Ann Liebert Inc.; 2016 [cited 2021 Feb 25];14:197–201. Available from: https://pubmed.ncbi.nlm.nih.gov/27081744/

  85. Gralka E, Luchinat C, Tenori L, Ernst B, Thurnheer M, Schultes B. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am J Clin Nutr [Internet]. American Society for Nutrition; 2015 [cited 2021 Mar 4];102:1313–22. Available from: https://pubmed.ncbi.nlm.nih.gov/26581381/

  86. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes Surg [Internet]. Springer New York LLC; 2017 [cited 2018 May 11];27:917–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27738970

  87. Kwee LC, Ilkayeva O, Muehlbauer MJ, Bihlmeyer N, Wolfe B, Purnell JQ, et al. Metabolites and diabetes remission after weight loss. Nutr Diabetes [Internet]. Nutr Diabetes; 2021 [cited 2021 Jul 9];11. Available from: https://pubmed.ncbi.nlm.nih.gov/33627633/

  88. Ceperuelo-Mallafré V, Llauradó G, Keiran N, Benaige E, Astiarraga B, Martínez L, et al. Preoperative Circulating Succinate Levels as a Biomarker for Diabetes Remission After Bariatric Surgery. Diabetes Care [Internet]. Diabetes Care; 2019 [cited 2021 Jul 9];42:1956–65. Available from: https://pubmed.ncbi.nlm.nih.gov/31375523/

  89. Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Rev Endocr Metab Disord [Internet]. Rev Endocr Metab Disord; 2019 [cited 2021 Jul 9];20:439–47. Available from: https://pubmed.ncbi.nlm.nih.gov/31654259/

  90. Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gomez-Huelgas R, et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J [Internet]. ISME J; 2018 [cited 2021 Jul 9];12:1642–57. Available from: https://pubmed.ncbi.nlm.nih.gov/29434314/

  91. Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, et al. The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories. Gastroenterology [Internet]. Elsevier BV; 2021 [cited 2021 May 17];160. Available from: https://pubmed.ncbi.nlm.nih.gov/33482223/

  92. Stefura T, Zapała B, Gosiewski T, Krzysztofik M, Skomarovska O, Major P. Relationship between bariatric surgery outcomes and the preoperative gastrointestinal microbiota: a cohort study. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2021 [cited 2021 May 31];17:889–99. Available from: https://pubmed.ncbi.nlm.nih.gov/33619006/

  93. Fouladi F, Brooks AE, Fodor AA, Carroll IM, Bulik-Sullivan EC, Tsilimigras MCB, et al. The Role of the Gut Microbiota in Sustained Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obes Surg [Internet]. Springer New York LLC; 2019 [cited 2021 Feb 25];29:1259–67. Available from: https://pubmed.ncbi.nlm.nih.gov/30604078/

  94. Faria SL, Santos A, Magro DO, Cazzo E, Assalin HB, Guadagnini D, et al. Gut Microbiota Modifications and Weight Regain in Morbidly Obese Women After Roux-en-Y Gastric Bypass. Obes Surg [Internet]. Springer; 2020 [cited 2021 Feb 25];30:4958–66. Available from: https://pubmed.ncbi.nlm.nih.gov/32915360/

  95. Gutiérrez-Repiso C, Moreno-Indias I, Hollanda A, Martín-Núñez GM, Vidal J, Tinahones FJ. Gut microbiota specific signatures are related to the successful rate of bariatric surgery. Am J Transl Res [Internet]. 2019 [cited 2021 Feb 25];11:942–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30899393/

  96. Saha S, Mara K, Pardi DS, Khanna S. Long-term Safety of Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. Gastroenterology [Internet]. Elsevier BV; 2021 [cited 2021 Feb 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/33444573/

  97. Fang H, Fu L, Li X, Lu C, Su Y, Xiong K, et al. Long-term efficacy and safety of monotherapy with a single fresh fecal microbiota transplant for recurrent active ulcerative colitis: a prospective randomized pilot study. Microb Cell Fact [Internet]. BioMed Central Ltd; 2021 [cited 2021 Feb 25];20. Available from: https://pubmed.ncbi.nlm.nih.gov/33468164/

  98. De Groot P, Scheithauer T, Bakker GJ, Prodan A, Levin E, Khan MT, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut [Internet]. BMJ Publishing Group; 2019 [cited 2021 Feb 25];69. Available from: https://pubmed.ncbi.nlm.nih.gov/31147381/

  99. Yu EW, Gao L, Stastka P, Cheney MC, Mahabamunuge J, Soto MT, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The fmt-trim double-blind placebo-controlled pilot trial. PLoS Med [Internet]. Public Library of Science; 2020 [cited 2021 Feb 25];17. Available from: https://pubmed.ncbi.nlm.nih.gov/32150549/

  100. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab [Internet]. Cell Press; 2017 [cited 2021 Feb 25];26:611–619.e6. Available from: https://pubmed.ncbi.nlm.nih.gov/28978426/

  101. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology [Internet]. 2012/06/26. W.B. Saunders; 2012 [cited 2021 Feb 25];143:913–6.e7. Available from: https://pubmed.ncbi.nlm.nih.gov/22728514/

  102. Allegretti JR, Kassam Z, Hurtado J, Marchesi JR, Mullish BH, Chiang A, et al. Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity [Internet]. Hormones. Springer Science and Business Media Deutschland GmbH; 2021 [cited 2021 Feb 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/33420959/

  103. Tenorio-Jiménez C, Martínez-Ramírez MJ, Gil Á, Gómez-Llorente C. Effects of probiotics on metabolic syndrome: A systematic review of randomized clinical trials [Internet]. Nutrients. MDPI AG; 2020 [cited 2021 Feb 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/31906372/

  104. Chen JC, Lee WJ, Tsou JJ, Liu TP, Tsai PL. Effect of probiotics on postoperative quality of gastric bypass surgeries: A prospective randomized trial. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2016 [cited 2021 Feb 25];12:57–61. Available from: https://pubmed.ncbi.nlm.nih.gov/26499352/

  105. Ramos MRZ, de Oliveira Carlos L, Wagner NRF, Felicidade I, da Cruz MR, Taconeli CA, et al. Effects of Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 Supplementation on Nutritional and Metabolic Parameters in the Early Postoperative Period after Roux-en-Y Gastric Bypass: a Randomized, Double-Blind, Placebo-Controlled Trial. Obes Surg [Internet]. Springer; 2021 [cited 2021 Feb 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/33443719/

  106. Mokhtari Z, Karbaschian Z, Pazouki A, Kabir A, Hedayati M, Mirmiran P, et al. The Effects of Probiotic Supplements on Blood Markers of Endotoxin and Lipid Peroxidation in Patients Undergoing Gastric Bypass Surgery; a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial with 13 Months Follow-Up. Obes Surg [Internet]. Springer New York LLC; 2019 [cited 2021 Feb 25];29:1248–58. Available from: https://pubmed.ncbi.nlm.nih.gov/30612325/

  107. Sherf-Dagan S, Zelber-Sagi S, Zilberman-Schapira G, Webb M, Buch A, Keidar A, et al. Probiotics administration following sleeve gastrectomy surgery: A randomized double-blind trial. Int J Obes [Internet]. Nature Publishing Group; 2018 [cited 2021 Feb 25];42:147–55. Available from: https://pubmed.ncbi.nlm.nih.gov/28852205/

  108. Fernandes R, Beserra BTS, Mocellin MC, Kuntz MGF, Da Rosa JS, De Miranda RCD, et al. Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass a Randomized, triple-blind, placebo-controlled pilot study. J Clin Gastroenterol [Internet]. Lippincott Williams and Wilkins; 2016 [cited 2021 Feb 25];50:208–17. Available from: https://pubmed.ncbi.nlm.nih.gov/25909598/

  109. Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, Hernandez-Boussard T, et al. Probiotics improve outcomes after roux-en-Y gastric bypass surgery: A prospective randomized trial. J Gastrointest Surg [Internet]. J Gastrointest Surg; 2009 [cited 2021 Feb 25];13:1198–204. Available from: https://pubmed.ncbi.nlm.nih.gov/19381735/

  110. Wagner NRF, Ramos MRZ, de Oliveira Carlos L, da Cruz MRR, Taconeli CA, Filho AJB, et al. Effects of Probiotics Supplementation on Gastrointestinal Symptoms and SIBO after Roux-en-Y Gastric Bypass: a Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Obes Surg [Internet]. Springer; 2020 [cited 2021 Feb 25];31. Available from: https://pubmed.ncbi.nlm.nih.gov/32780258/

  111. Aktas A, Kayaalp C, Gunes O, Kirkil C, Tardu A, Aydin MC, et al. Surgical Site Infections after Laparoscopic Bariatric Surgery: Is Routine Antibiotic Prophylaxis Required? Surg Infect (Larchmt) [Internet]. Mary Ann Liebert Inc; 2021 [cited 2021 Mar 4]; Available from: https://pubmed.ncbi.nlm.nih.gov/33416442/

  112. Jacobson R, Terranella S, Booker C, Khalid S, Torquati A, Omotosho P. The Impact of Perioperative Antibiotic Prophylaxis on Weight Loss following Laparoscopic Sleeve Gastrectomy. J Laparoendosc Adv Surg Tech [Internet]. Mary Ann Liebert Inc.; 2020 [cited 2021 Mar 4];30:998–1000. Available from: https://pubmed.ncbi.nlm.nih.gov/32668172/

  113. Nalluri H, Kizy S, Ewing K, Luthra G, Leslie DB, Bernlohr DA, et al. Peri-operative antibiotics acutely and significantly impact intestinal microbiota following bariatric surgery. Sci Rep [Internet]. Nature Research; 2020 [cited 2021 Mar 4];10. Available from: https://pubmed.ncbi.nlm.nih.gov/33230230/

  114. Pat JJ, Helm MC, Higgins RM, Goldblatt MI, Gould JC, Kindel TL. Peri-operative, intravenous clindamycin may improve the resolution rate of hypertension after Roux-en-Y gastric bypass in morbidly obese patients. Surg Endosc [Internet]. Surg Endosc; 2019 [cited 2021 Jul 9];33:3984–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30734082/

  115. Schulz C, Schütte K, Koch N, Vilchez-Vargas R, Wos-Oxley ML, Oxley APA, et al. The active bacterial assemblages of the upper Gi tract in individuals with and without Helicobacter infection. Gut [Internet]. BMJ Publishing Group; 2016 [cited 2020 Aug 4];67:216–25. Available from: https://pubmed.ncbi.nlm.nih.gov/27920199/

  116. Smelt HJM, Smulders JF, Gilissen LPL, Said M, Ugale S, Pouwels S. Influence of Helicobacter pylori infection on gastrointestinal symptoms and complications in bariatric surgery patients: a review and meta-analysis. Surg Obes Relat Dis [Internet]. Elsevier Inc.; 2018 [cited 2020 Aug 4];14:1645–57. Available from: https://pubmed.ncbi.nlm.nih.gov/30172695/

  117. Goday A, Castañer O, Benaiges D, Pou AB, Ramón JM, Iglesias M del M, et al. Can Helicobacter pylori Eradication Treatment Modify the Metabolic Response to Bariatric Surgery? Obes Surg [Internet]. Springer New York LLC; 2018 [cited 2020 Aug 4];28:2386–95. Available from: https://pubmed.ncbi.nlm.nih.gov/29500674/

  118. Martin-Nuñez GM, Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front Endocrinol (Lausanne) [Internet]. Front Endocrinol (Lausanne); 2021 [cited 2021 Jul 12];12. Available from: https://pubmed.ncbi.nlm.nih.gov/34220702/

  119. de Jonge C, Fuentes S, Zoetendal EG, Bouvy ND, Nelissen R, Buurman WA, et al. Metabolic improvement in obese patients after duodenal–jejunal exclusion is associated with intestinal microbiota composition changes. Int J Obes [Internet]. Springer Nature; 2019[cited 2021 Feb 25];43:2509–17. Available from: https://pubmed.ncbi.nlm.nih.gov/30765893/

  120. Wang F, Bai R, Yan W, Yan M, Dong L, Song M. Differential composition of gut microbiota among healthy volunteers, morbidly obese patients and post‑bariatric surgery patients. Exp Ther Med [Internet]. Spandidos Publications; 2019 [cited 2021 Feb 25];17. Available from: https://pubmed.ncbi.nlm.nih.gov/30867711/

Download references

Funding

The research group belongs to the “Centro de Investigación en Red de la Fisiopatología de la Obesidad y la Nutrición” (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. CGR and IMI are supported by a grant from Instituto de Salud Carlos III (“Miguel Servet programme” (CP20/00066 and CP16/00163, respectively), This work was supported in part by grants from ISCIII cofounded by Fondo Europeo de Desarrollo Regional – FEDER, PI18/01160, CP16/00163; as well as UMA18-FEDERJA-116 founded by Junta de Andalucía (Fondo Europeo de Desarrollo Regional-FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Gutiérrez-Repiso.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Repiso, C., Moreno-Indias, I. & Tinahones, F.J. Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Rev Endocr Metab Disord 22, 1137–1156 (2021). https://doi.org/10.1007/s11154-021-09676-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09676-8

Keywords

Navigation