Skip to main content

Advertisement

Log in

Biological Roles of Liver X Receptors in Immune Cells

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are activated by specific oxysterols. LXRs heterodimerize with retinoid X receptors to regulate positively the expression of a variety of target genes, many of which are involved in lipid and glucose metabolism. In the last few years, new targets of LXR activation have been identified with roles in the modulation of immune responses. Moreover, LXRs mediate repression of inflammatory pathways through mechanisms collectively known as transrepression. Here, we revise recent findings on the impact of LXR activation on immune responses, with an emphasis on advances in the understanding of the molecular mechanisms that mediate these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette transporter

AIM:

Apoptosis inhibitory protein secreted by macrophages

AP-1:

Activating protein-1

Apo:

Apolipoprotein

Ccl:

Chemokine (C–C motif) ligand

CCR7:

CC chemokine receptor-7

ChREBP:

Carbohydrate response element-binding protein

CORO2A:

Coronin 2A

GPS2:

G protein pathway suppressor 2

GR:

Glucocorticoid receptor

HDAC:

Histone deacetylase

HIV:

Human immunodeficiency virus

IFN-γ:

Ιnterferon-gamma

Ig:

Immunoglobulin

IL:

Interleukin

IRF:

Interferon-regulatory factor

LDL:

Low-density lipoproteins

LPS:

Lipopolysaccharide

LXR:

Liver X receptor

LXRE:

LXR response element

Mertk:

c-mer tyrosine kinase

NCoR:

Nuclear receptor co-repressor

NF-κB:

Nuclear factor kappa B

NOS2:

Nitric oxide synthase 2

PIAS:

Protein inhibitor of activated STAT

PPAR:

Peroxisome proliferator-activated receptor

RXR:

Retinoid X receptor

SMRT:

Silencing mediator of retinoic acid and thyroid hormone receptors

SREBP-1c:

Sterol regulatory element-binding protein 1c

STAT-1:

Signal transducer and activator of transcription

SULT:

Sulfotransferase

SUMO:

Small ubiquitin-like modifier

Th:

Helper T cell

TLR:

Toll-like receptor

TNF-α:

Τumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  • A-Gonzalez N, Bensinger SJ, Hong C et al (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258

    Article  PubMed  CAS  Google Scholar 

  • Arai S, Shelton JM, Chen M et al (2005) A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 1:201–213

    Article  PubMed  CAS  Google Scholar 

  • Baldán Á, Bojanic DD, Edwards PA (2009) The ABCs of sterol transport. J Lipid Res 50(Suppl):S80–S85

    Article  PubMed  CAS  Google Scholar 

  • Benkoussa M, Brand C, Delmotte M-H et al (2002) Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol Cell Biol 22:4522–4534

    Article  PubMed  CAS  Google Scholar 

  • Bensinger SJ, Bradley MN, Joseph SB et al (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111

    Article  PubMed  CAS  Google Scholar 

  • Blaschke F, Leppanen O, Takata Y et al (2004) Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ Res 95:e110–e123

    Article  PubMed  CAS  Google Scholar 

  • Boergesen M, Pedersen TA, Gross B et al (2012) Genome-wide profiling of LXR, RXR and PPARα in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32:852–867

    Article  PubMed  CAS  Google Scholar 

  • Bruhn KW, Marathe C, Maretti-Mira AC et al (2010) LXR deficiency confers increased protection against visceral Leishmania infection in mice. PLoS Negl Trop Dis 4:e886

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Castrillo A, Tontonoz P et al (2007) Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 75:753–759

    Article  PubMed  CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A et al (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  PubMed  CAS  Google Scholar 

  • Castrillo A, Joseph SB, Vaidya SA et al (2003) Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 12:805–816

    Article  PubMed  CAS  Google Scholar 

  • Cha JY, Repa JJ (2007) The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282:743–751

    Article  PubMed  CAS  Google Scholar 

  • Chang KCN, Shen Q, Oh IG et al (2008) Liver X receptor is a therapeutic target for photoaging and chronological skin aging. Mol Endocrinol 22:2407–2419

    Article  PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Sorrentino R, Shimada K et al (2008) Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol 181:7186–7193

    PubMed  CAS  Google Scholar 

  • Cheng O, Ostrowski RP, Liu W et al (2010) Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience 166:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Chuu CP, Kokontis JM, Hiipakka RA et al (2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci 14:543–553

    Article  PubMed  CAS  Google Scholar 

  • Collins JL, Fivush AM, Watson MA et al (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966

    Article  PubMed  CAS  Google Scholar 

  • Commerford SR, Vargas L, Dorfman SE et al (2007) Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 21:3002–3012

    Article  PubMed  CAS  Google Scholar 

  • Crisafulli C, Di PR, Mazzon E et al (2010a) Liver X receptor agonist treatment reduced splanchnic ischemia and reperfusion injury. J Leukoc Biol 87:309–321

    Article  PubMed  CAS  Google Scholar 

  • Crisafulli C, Mazzon E, Paterniti I et al (2010b) Effects of liver X receptor agonist treatment on signal transduction pathways in acute lung inflammation. Respir Res 11:19

    Article  PubMed  CAS  Google Scholar 

  • Denechaud PD, Bossard P, Lobaccaro JM et al (2008) ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 118:956–964

    PubMed  CAS  Google Scholar 

  • Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906–911

    Article  PubMed  CAS  Google Scholar 

  • Edwards PA, Kast HR, Anisfeld AM (2002) BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res 43:2–12

    PubMed  CAS  Google Scholar 

  • Feig JE, Pineda-Torra I, Sanson M et al (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120:4415–4424

    Article  PubMed  CAS  Google Scholar 

  • Forman BM, Ruan B, Chen J et al (1997) The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc Natl Acad Sci USA 94:10588–10593

    Article  PubMed  CAS  Google Scholar 

  • Fowler AJ, Sheu MY, Schmuth M et al (2003) Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J Invest Dermatol 120:246–255

    Article  PubMed  CAS  Google Scholar 

  • Galon J, Franchimont D, Hiroi N et al (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16:61–71

    Article  PubMed  CAS  Google Scholar 

  • Geyeregger R, Zeyda M, Bauer W et al (2007) Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109:4288–4295

    Article  PubMed  CAS  Google Scholar 

  • Geyeregger R, Shehata M, Zeyda M et al (2009) Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J Leukoc Biol 86:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Ghisletti S, Huang W, Ogawa S et al (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25:57–70

    Article  PubMed  CAS  Google Scholar 

  • Ghisletti S, Huang W, Jepsen K et al (2009) Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 23:681–693

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Ogawa S (2006) Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 6:44–55

    Article  PubMed  CAS  Google Scholar 

  • Gong H, He J, Lee JH et al (2009) Activation of the liver X receptor prevents lipopolysaccharide-induced lung injury. J Biol Chem 284:30113–30121

    Article  PubMed  CAS  Google Scholar 

  • Hamon Y, Broccardo C, Chambenoit O et al (2000) ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2:399–406

    Article  PubMed  CAS  Google Scholar 

  • Hanley TM, Blay Puryear W, Gummuluru S et al (2010) PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 6:e1000981

    Article  PubMed  CAS  Google Scholar 

  • Heine G, Dahten A, Hilt K et al (2009) Liver X receptors control IgE expression in B cells. J Immunol 182:5276–5282

    Article  PubMed  CAS  Google Scholar 

  • Herath KB, Jayasuriya H, Guan Z et al (2005) Anthrabenzoxocinones from Streptomyces sp. as liver X receptor ligands and antibacterial agents. J Nat Prod 68:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Hindinger C, Hinton DR, Kirwin SJ et al (2006) Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res 84:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Hoberg JE, Yeung F, Mayo MW (2004) SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 16:245–255

    Article  PubMed  CAS  Google Scholar 

  • Hörlein AJ, Näär AM, Heinzel T et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    Article  PubMed  Google Scholar 

  • Huang W, Ghisletti S, Saijo K et al (2011) Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470:414–418

    Article  PubMed  CAS  Google Scholar 

  • Hwang EJ, Lee JM, Jeong J et al (2009) SUMOylation of RORalpha potentiates transcriptional activation function. Biochem Biophys Res Commun 378:513–517

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson T, Venteclef N, Toresson G et al (2009) GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol Cell 34:510–518

    Article  PubMed  CAS  Google Scholar 

  • Janowski BA, Willy PJ, Devi TR et al (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    Article  PubMed  CAS  Google Scholar 

  • Janowski BA, Grogan MJ, Jones SA et al (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA 96:266–271

    Article  PubMed  CAS  Google Scholar 

  • Jayasuriya H, Herath KB, Ondeyka JG et al (2005) Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources. J Nat Prod 68:1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Lee CYD, Mandrekar S et al (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58:681–693

    Article  PubMed  CAS  Google Scholar 

  • Joseph SB, McKilligin E, Pei L et al (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99:7604–7609

    Article  PubMed  CAS  Google Scholar 

  • Joseph SB, Castrillo A, Laffitte BA et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  PubMed  CAS  Google Scholar 

  • Joseph SB, Bradley MN, Castrillo A et al (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119:299–309

    Article  PubMed  CAS  Google Scholar 

  • Kanno Y, Levi BZ, Tamura T et al (2005) Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. J Interf Cytokine Res 25:770–779

    Article  CAS  Google Scholar 

  • Kim KH, Lee GY, Kim JI et al (2010) Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity. J Lipid Res 51:3425–3433

    Article  PubMed  CAS  Google Scholar 

  • Korf H, Vander Beken S, Romano M et al (2009) Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest 119:1626–1637

    Article  PubMed  CAS  Google Scholar 

  • Kratzer A, Buchebner M, Pfeifer T et al (2009) Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res 50:312–326

    Article  PubMed  CAS  Google Scholar 

  • Kropf P, Fuentes JM, Fähnrich E et al (2005) Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J 19:1000–1002

    PubMed  CAS  Google Scholar 

  • Kurokawa J, Arai S, Nakashima K et al (2010) Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab 11:479–492

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa J, Nagano H, Ohara O et al (2011) Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proc Natl Acad Sci USA 108:12072–12077

    Article  PubMed  CAS  Google Scholar 

  • Laffitte BA, Joseph SB, Walczak R et al (2001) Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol 21:7558–7568

    Article  PubMed  CAS  Google Scholar 

  • Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Kim JH, Lee YC et al (2000) Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor. J Biol Chem 275:12470–12474

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Lu K, Hazard S et al (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Park SM, Kim OS et al (2009) Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol Cell 35:806–817

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272:3137–3140

    Article  PubMed  CAS  Google Scholar 

  • Li N, Salter RC, Ramji DP (2011) Molecular mechanisms underlying the inhibition of IFN-γ-induced, STAT1-mediated gene transcription in human macrophages by simvastatin and agonists of PPARs and LXRs. J Cell Biochem 112:675–683

    Article  PubMed  CAS  Google Scholar 

  • Lu K, Lee MH, Hazard S et al (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 69:278–290

    Article  PubMed  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  • Marathe C, Bradley MN, Hong C et al (2006) The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 281:32197–32206

    Article  PubMed  CAS  Google Scholar 

  • Meng ZX, Nie J, Ling JJ et al (2009) Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia 52:125–135

    Article  PubMed  CAS  Google Scholar 

  • Mitro N, Mak PA, Vargas L et al (2007) The nuclear receptor LXR is a glucose sensor. Nature 445:219–223

    Article  PubMed  CAS  Google Scholar 

  • Moazed TC, Campbell LA, Rosenfeld ME et al (1999) Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis 180:238–241

    Article  PubMed  CAS  Google Scholar 

  • Molteni V, Li X, Nabakka J et al (2007) N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem 50:4255–4259

    Article  PubMed  CAS  Google Scholar 

  • Morales JR, Ballesteros I, Deniz JM et al (2008) Activation of liver X receptors promotes neuroprotection and reduces brain inflammation in experimental stroke. Circulation 118:1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Naiki Y, Sorrentino R, Wong MH et al (2008) TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 181:7176–7185

    PubMed  CAS  Google Scholar 

  • Nunomura S, Endo K, Makishima M et al (2010) Oxysterol represses high-affinity IgE receptor-stimulated mast cell activation in liver X receptor-dependent and -independent manners. FEBS Lett 584:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lozach J, Jepsen K et al (2004) A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci USA 101:14461–14466

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lozach J, Benner C et al (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122:707–721

    Article  PubMed  CAS  Google Scholar 

  • Palvimo JJ (2007) PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem Soc Trans 35(Pt 6):1405–1408

    Article  PubMed  CAS  Google Scholar 

  • Park MC, Kwon YJ, Chung SJ et al (2010) Liver X receptor agonist prevents the evolution of collagen-induced arthritis in mice. Rheumatology 49:882–890

    Article  PubMed  CAS  Google Scholar 

  • Pascual G, Fong AL, Ogawa S et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763

    Article  PubMed  CAS  Google Scholar 

  • Pascual-García M, Carbó JM, León T et al (2011) Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4. J Immunol 186:4656–4667

    Article  PubMed  CAS  Google Scholar 

  • Paterniti I, Genovese T, Mazzon E et al (2010) Liver X receptor agonist treatment regulates inflammatory response after spinal cord trauma. J Neurochem 112:611–624

    Article  PubMed  CAS  Google Scholar 

  • Peet DJ, Turley SD, Ma W et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704

    Article  PubMed  CAS  Google Scholar 

  • Peyron P, Vaubourgeix J, Poquet Y et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204

    Article  PubMed  CAS  Google Scholar 

  • Plat J, Nichols JA, Mensink RP (2005) Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J Lipid Res 46:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Poukka H, Karvonen U, Janne OA et al (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97:14145–14150

    Article  PubMed  CAS  Google Scholar 

  • Pourcet B, Feig JE, Vengrenyuk Y et al (2011) LXRα regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ Res 109:492–501

    Article  PubMed  CAS  Google Scholar 

  • Quinet EM, Basso MD, Halpern AR et al (2009) LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J Lipid Res 50:2358–2370

    Article  PubMed  CAS  Google Scholar 

  • Repa JJ, Liang G, Ou J et al (2000a) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Repa JJ, Turley SD, Lobaccaro JA et al (2000b) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289:1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Repa JJ, Berge KE, Pomajzl C et al (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277:18793–18800

    Article  PubMed  CAS  Google Scholar 

  • Ricart BG, John B, Lee D et al (2011) Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J Immunol 186:53–61

    Article  PubMed  CAS  Google Scholar 

  • Ricote M, Valledor AF, Glass CK (2004) Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis. Arterioscler Thromb Vasc Biol 24:230–239

    Article  PubMed  CAS  Google Scholar 

  • Schultz JR, Tu H, Luk A et al (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838

    Article  PubMed  CAS  Google Scholar 

  • Scott RS, McMahon EJ, Pop SM et al (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Ondeyka JG, Liu W et al (2005) Discovery and development of dimeric podocarpic acid leads as potent agonists of liver X receptor with HDL cholesterol raising activity in mice and hamsters. Bioorg Med Chem Lett 15:2824–2828

    Article  PubMed  CAS  Google Scholar 

  • Sironi L, Mitro N, Cimino M et al (2008) Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS Lett 582:3396–3400

    Article  PubMed  CAS  Google Scholar 

  • Smoak K, Madenspacher J, Jeyaseelan S et al (2008) Effects of liver X receptor agonist treatment on pulmonary inflammation and host defense. J Immunol 180:3305–3312

    PubMed  CAS  Google Scholar 

  • Song C, Liao S (2000) Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 141:4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Terasaka N, Hiroshima A, Koieyama T et al (2003) T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 536:6–11

    Article  PubMed  CAS  Google Scholar 

  • Terasaka N, Hiroshima A, Ariga A et al (2005) Liver X receptor agonists inhibit tissue factor expression in macrophages. FEBS J 272:1546–1556

    Article  PubMed  CAS  Google Scholar 

  • Tian S, Poukka H, Palvimo JJ et al (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J 367(Pt 3):907–911

    Article  PubMed  CAS  Google Scholar 

  • Töröcsik D, Baráth M, Benko S et al (2010) Activation of liver X receptor sensitizes human dendritic cells to inflammatory stimuli. J Immunol 184:5456–5465

    Article  PubMed  CAS  Google Scholar 

  • Torra IP, Ismaili N, Feig JE et al (2008) Phosphorylation of liver X receptor alpha selectively regulates target gene expression in macrophages. Mol Cell Biol 28:2626–2636

    Article  PubMed  CAS  Google Scholar 

  • Traves PG, Hortelano S, Zeini M et al (2007) Selective activation of liver X receptors by acanthoic acid-related diterpenes. Mol Pharmacol 71:1545–1553

    Article  PubMed  CAS  Google Scholar 

  • Treuter E, Venteclef N (2011) Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta 1812:909–918

    Article  PubMed  CAS  Google Scholar 

  • Ullrich JW, Morris R, Bernotas RC et al (2010) Synthesis of 4-(3-biaryl)quinoline sulfones as potent liver X receptor agonists. Bioorg Med Chem Lett 20:2903–2907

    Article  PubMed  CAS  Google Scholar 

  • Valledor AF, Hsu LC, Ogawa S et al (2004) Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA 101:17813–17818

    Article  PubMed  CAS  Google Scholar 

  • Vedin LL, Lewandowski SA, Parini P et al (2009) The oxysterol receptor LXR inhibits proliferation of human breast cancer cells. Carcinogenesis 30:575–579

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran A, Repa JJ, Lobaccaro JM et al (2000) Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem 275:14700–14707

    Article  PubMed  CAS  Google Scholar 

  • Venteclef N, Jakobsson T, Ehrlund A et al (2010) GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev 24:381–395

    Article  PubMed  CAS  Google Scholar 

  • Villablanca EJ, Raccost L, Zhou D et al (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16:98–105

    Article  PubMed  CAS  Google Scholar 

  • Wagner BL, Valledor AF, Shao G et al (2003) Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol 23:5780–5789

    Article  PubMed  CAS  Google Scholar 

  • Walczak R, Joseph SB, Laffitte BA et al (2004) Transcription of the vascular endothelial growth factor gene in macrophages is regulated by liver X receptors. J Biol Chem 279:9905–9911

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Dahle MK, Agren J et al (2006) Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock 25:141–146

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Liu M, Wang Y et al (2011) Synthetic LXR agonist TO901317 attenuates lipopolysaccharide-induced acute lung injury in rats. Int Immunopharmacol 11:2098–2103

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Bledsoe RK, Collins JL et al (2003) X-ray crystal structure of the liver X receptor beta ligand binding domain: regulation by a histidine-tryptophan switch. J Biol Chem 278:27138–27143

    Article  PubMed  CAS  Google Scholar 

  • Willy PJ, Umesono K, Ong ES et al (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Yang C, McDonald JG, Patel A et al (2006) Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J Biol Chem 281:27816–27826

    Article  PubMed  CAS  Google Scholar 

  • Yu L, York J, von Bergmann K et al (2003) Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 278:15565–15570

    Article  PubMed  CAS  Google Scholar 

  • Zelcer N, Hong C, Boyadjian R et al (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325:100–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and Innovation (SAF2010-14989) and the Fundació Marató de TV3 (080930) (to A. F. Valledor.). M. Pascual-García is recipient of a fellowship from the Spanish Ministry of Education (FPU program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annabel F. Valledor.

About this article

Cite this article

Pascual-García, M., Valledor, A.F. Biological Roles of Liver X Receptors in Immune Cells. Arch. Immunol. Ther. Exp. 60, 235–249 (2012). https://doi.org/10.1007/s00005-012-0179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0179-9

Keywords

Navigation