Skip to main content

Advertisement

Log in

Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial–mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beury DW, Parker KH, Nyandjo M et al (2014) Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukoc Biol 96:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi G, Borgonovo G, Pistoia V et al (2011) Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol 26:941–951

    CAS  PubMed  Google Scholar 

  • Binsfeld M, Muller J, Lamour V et al (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7:37931–37943

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodogai M, Moritoh K, Lee-Chang C et al (2015) Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res 75:3456–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutte AM, Friedman DB, Bogyo M et al (2011) Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis. FASEB J 25:2626–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronte V, Brandau S, Chen SH et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catena R, Bhattacharya N, El Rayes T et al (2013) Bone marrow-derived Gr1 + cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chafe SC, Lou Y, Sceneay J et al (2015) Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res 75:996–1008

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang L, Li P et al (2018) Dual TGF-beta and PD-1 blockade synergistically enhances MAGE-A3-specific CD8(+) T cell response in esophageal squamous cell carcinoma. Int J Cancer. https://doi.org/10.1002/ijc.31730

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Ha SY, Kim HM et al (2016) The prognostic effects of tumor infiltrating regulatory T cells and myeloid derived suppressor cells assessed by multicolor flow cytometry in gastric cancer patients. Oncotarget 7:7940–7951

    PubMed  PubMed Central  Google Scholar 

  • Condamine T, Ramachandran I, Youn JI et al (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 66:97–110

    Article  CAS  PubMed  Google Scholar 

  • Condamine T, Dominguez GA, Youn JI et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 1(2):aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  • Connolly MK, Mallen-St Clair J, Bedrosian AS et al (2010) Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol 87:713–725

    Article  CAS  PubMed  Google Scholar 

  • Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui TX, Kryczek I, Zhao L et al (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611–621

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Liu Y, Lee H et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Rong Y, Teng Y et al (2017) Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 36:639–651

    Article  CAS  PubMed  Google Scholar 

  • Drews-Elger K, Iorns E, Dias A et al (2014) Infiltrating S100A8 + myeloid cells promote metastatic spread of human breast cancer and predict poor clinical outcome. Breast Cancer Res Treat 148:41–59

    Article  CAS  PubMed  Google Scholar 

  • Eisenblaetter M, Flores-Borja F, Lee JJ et al (2017) Visualization of tumor-immune interaction - target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7:2392–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke J, Ko J, Rini B et al (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 11:856–861

    Article  CAS  PubMed  Google Scholar 

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Joshi N, Choi H et al (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1384–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles AJ, Reid CM, Evans JD et al (2016) Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res 76:1335–1347

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xu F, Lu T et al (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Sakurai Y et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Hoechst B, Voigtlaender T, Ormandy L et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50:799–807

    Article  CAS  PubMed  Google Scholar 

  • Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24:2776–2786

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Williams R, Wang L et al (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata T, Kondo Y, Kimura O et al (2016) PD-L1(+)MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment. Sci Rep 6:39296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Guo W, Liang X (2014) Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol 75:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JS, Rayman P, Ireland J et al (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70:3526–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowanetz M, Wu X, Lee J et al (2010) Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+ Ly6C+ granulocytes. Proc Natl Acad Sci USA 107:21248–21255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujawski M, Kortylewski M, Lee H et al (2008) Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34:881–895

    CAS  PubMed  Google Scholar 

  • Lee JM, Seo JH, Kim YJ et al (2012) The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 131:741–751

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Kim EK, Seo H et al (2014) Serum amyloid A3 exacerbates cancer by enhancing the suppressive capacity of myeloid-derived suppressor cells via TLR2-dependent STAT3 activation. Eur J Immunol 44:1672–1684

    Article  CAS  PubMed  Google Scholar 

  • Li F, Tiede B, Massagué J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Ye SB, OuYang LY et al (2015) COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncoimmunology 4:e1044712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Gordon-Weeks A, Allen D et al (2015) Cd11b(+) myeloid cells support hepatic metastasis through down-regulation of angiopoietin-like 7 in cancer cells. Hepatology 62:521–533

    Article  CAS  PubMed  Google Scholar 

  • Lindau D, Gielen P, Kroesen M et al (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Redd PS, Lee JR et al (2016) The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 5:e1247135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruhashi T, Kii I, Saito M et al (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauti LA, Le Bitoux MA, Baumer K et al (2011) Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J Clin Invest 121:2794–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moserle L, Casanovas O (2013) Anti-angiogenesis and metastasis: a tumour and stromal cell alliance. J Intern Med 273:128–137

    Article  CAS  PubMed  Google Scholar 

  • Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES et al (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumour Biol 37:1387–1406

    Article  CAS  PubMed  Google Scholar 

  • Mucha J, Majchrzak K, Taciak B et al (2014) MDSCs mediate angiogenesis and predispose canine mammary tumor cells for metastasis via IL-28/IL-28RA (IFN-λ) signaling. PLoS One 9:e103249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  • Noman MZ, Desantis G, Janji B et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermajer N, Muthuswamy R, Lesnock J et al (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh K, Lee OY, Shon SY et al (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res 15:R79

    Article  PubMed  PubMed Central  Google Scholar 

  • Olechnowicz SW, Edwards CM (2014) Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res 74:1625–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14:306–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P, Beury DW et al (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouzounova M, Lee E, Piranlioglu R et al (2017) Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat Commun 8:14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan PY, Ma G, Weber KJ et al (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108

    Article  CAS  PubMed  Google Scholar 

  • Panni RZ, Sanford DE, Belt BA et al (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 63:513–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaccio F, Paino F, Regad T et al (2017) Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med 6:2115–2125

    Article  PubMed  PubMed Central  Google Scholar 

  • Park YJ, Song B, Kim YS et al (2013) Tumor microenvironmental conversion of natural killer cells into myeloid-derived suppressor cells. Cancer Res 73:5669–5681

    Article  CAS  PubMed  Google Scholar 

  • Pruenster M, Vogl T, Roth J et al (2016) S100A8/A9: from basic science to clinical application. Pharmacol Ther 167:120–131

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Zhuang G, Yu L et al (2012) Induction of Bv8 expression by granulocyte colony-stimulating factor in CD11b+ Gr1+ cells: key role of Stat3 signaling. J Biol Chem 287:19574–19584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8:1237–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowski MR, Stephen TL, Svoronos N et al (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27–40

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Tillo E, de Barrios O, Siles L et al (2011) beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 108:19204–19209

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangaletti S, Tripodo C, Sandri S et al (2014) Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res 74:4706–4719

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Shimizu K, Shinga J et al (2015) Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology 4:e995541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawant A, Deshane J, Jules J et al (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73:672–682

    Article  CAS  PubMed  Google Scholar 

  • Sceneay J, Chow MT, Chen A et al (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72:3906–3911

    Article  CAS  PubMed  Google Scholar 

  • Seshadri M, Poduval TB, Sundaram K (1979) Studies on metastases. I. Role of sensitization and immunosuppression. J Natl Cancer Inst 63:1205–1210

    CAS  PubMed  Google Scholar 

  • Shaw AK, Pickup MW, Chytil A et al (2015) TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS One 10:e0117908

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen T, Zhou L, Shen H et al (2017) Prognostic value of programmed cell death protein 1 expression on CD8+ T lymphocytes in pancreatic cancer. Sci Rep 7:7848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen M, Wang J, Yu W et al (2018) A novel MDSC-induced PD-1(−)PD-L1(+) B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties. Oncoimmunology 7:e1413520

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Ou L, Han S et al (2014) Deficiency of Kruppel-like factor KLF4 in myeloid-derived suppressor cells inhibits tumor pulmonary metastasis in mice accompanied by decreased fibrocytes. Oncogenesis 3:e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhang J, Han X et al (2017) Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expression. Int J Cancer 140:1370–1383

    Article  CAS  PubMed  Google Scholar 

  • Shiels MS, Copeland G, Goodman MT et al (2015) Cancer stage at diagnosis in patients infected with the human immunodeficiency virus and transplant recipients. Cancer 121:2063–2071

    Article  PubMed  Google Scholar 

  • Shojaei F, Wu X, Zhong C et al (2007a) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Wu X, Malik AK et al (2007b) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Wu X, Qu X et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Clements VK, Bunt SK et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Okoro C, Foell D et al (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    Article  CAS  PubMed  Google Scholar 

  • Solito S, Pinton L, Mandruzzato S (2017) In brief: myeloid-derived suppressor cells in cancer. J Pathol 242:7–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Lee J, Kim J et al (2016) Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 7:51840–51853

    PubMed  PubMed Central  Google Scholar 

  • Stacker SA, Achen MG, Jussila L et al (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supuran CT, Winum JY (2015) Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Med Chem 7:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Terai S, Fushida S, Tsukada T et al (2015) Bone marrow derived “fibrocytes” contribute to tumor proliferation and fibrosis in gastric cancer. Gastric Cancer 18:306–313

    Article  CAS  PubMed  Google Scholar 

  • Thorn M, Point GR, Burga RA et al (2014) Liver metastases induce reversible hepatic B cell dysfunction mediated by Gr-1+ CD11b+ myeloid cells. J Leukoc Biol 96:883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh B, Wang X, Keeble J et al (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9:e1001162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugel S, De Sanctis F, Mandruzzato S et al (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Umansky V, Blattner C, Gebhardt C et al (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines 4:E36

    Article  CAS  PubMed  Google Scholar 

  • Vadrevu SK, Chintala NK, Sharma SK et al (2014) Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res 74:3454–3465

    Article  CAS  PubMed  Google Scholar 

  • van Deventer HW, Palmieri DA, Wu QP et al (2013) Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol 190:4861–4867

    Article  CAS  PubMed  Google Scholar 

  • Vrakas CN, O’Sullivan RM, Evans SE et al (2015) The measure of DAMPs and a role for S100A8 in recruiting suppressor cells in breast cancer lung metastasis. Immunol Invest 44:174–188

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chang EW, Wong SC et al (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xiong S, Mao Y et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239:484–495

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sun H, Wei J et al (2017a) CXCL1 is critical for pre-metastatic niche formation and metastasis in colorectal cancer. Cancer Res 77:3655–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu F, Liu L (2017b) Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine (Baltimore) 96:e6369

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93

    Article  CAS  PubMed  Google Scholar 

  • Wen SW, Sceneay J, Lima LG et al (2016) The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res 76:6816–6827

    Article  CAS  PubMed  Google Scholar 

  • Wong CC, Gilkes DM, Zhang H et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108:16369–16374

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyczechowska D et al (2015) Isolation and characterization of human MDSC from peripheral blood of patients with various malignancies (TUM6P. 971). J Immunol 194(1 Supplement):141.119–141.119

    Google Scholar 

  • Yamashita YM, Yuan H, Cheng J et al (2010) Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2:a001313

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Huang J (2014) Innate γδT17 cells convert cancer-elicited inflammation into immunosuppression through myeloid-derived suppressor cells. Oncoimmunology 3:e953423

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan HH, Pickup M, Pang Y et al (2010) Gr-1+ CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70:6139–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan HH, Jiang J, Pang Y et al (2015) CCL9 induced by TGFbeta signaling in myeloid cells enhances tumor cell survival in the premetastatic organ. Cancer Res 75:5283–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye XZ, Yu SC, Bian XW (2010) Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genomics 37:423–430

    Article  CAS  PubMed  Google Scholar 

  • Yumimoto K, Akiyoshi S, Ueo H et al (2015) F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Invest 125:621–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Z, Wu L et al (2013a) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8:e57114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Maric I, DiPrima MJ et al (2013b) Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood 122:1105–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Huang H, Zhu Y et al (2015a) A novel subset of B7-H3+ CD14+ HLA-DR-/low myeloid-derived suppressor cells are associated with progression of human NSCLC. Oncoimmunology 4:e977164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yuan X, Shi H et al (2015b) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Velez-Delgado A, Mathew E et al (2017) Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66:124–136

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Du H, Ding X et al (2015) Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal(−/−) mice. Oncogene 34:1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Du H, Blum JS et al (2016a) Critical role of PPARgamma in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis. Oncotarget 7:1529–1543

    PubMed  Google Scholar 

  • Zhao T, Yan C, Du H (2016b) Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis. Oncotarget 7:61121–61135

    PubMed  PubMed Central  Google Scholar 

  • Zheng R, Chen S, Chen S (2015) Correlation between myeloid-derived suppressor cells and S100A8/A9 in tumor and autoimmune diseases. Int Immunopharmacol 29:919–925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Susanna Mandruzzato from Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy, for evaluation of the manuscript and her expert comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflict of interest

The authors declare they had no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastaki Khoshbin, A., Eskian, M., Keshavarz-Fathi, M. et al. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch. Immunol. Ther. Exp. 67, 89–102 (2019). https://doi.org/10.1007/s00005-018-0531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-018-0531-9

Keywords

Navigation