Skip to main content
Log in

Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study aimed to evaluate the effect of myeloperoxidase (MPO) deficiency on lung inflammation induced by nonviable Candida albicans (nCA).

Methods

Mice were inoculated intranasally with nCA, and accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid was analyzed by flow cytometry. The levels of macrophage inflammatory protein 2 (MIP-2), keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in the lung were measured by ELISA. Production of MIP-2 and KC from neutrophils and macrophages was quantified in vitro. MIP-2 mRNA expression in the neutrophils was analyzed by real-time reverse transcription-PCR, and the extent of phosphorylation of ERK1/2 and Syk in the neutrophils was analyzed by Western blotting.

Results

The MPO−/− mice that received nCA showed more severe pneumonia than wild-type mice. Within 12 h of nCA administration, MPO−/− mice had significantly higher numbers of alveolar neutrophils and increased production of MIP-2 and KC relative to the responses seen in wild-type mice. Neutralization of MIP-2 and KC in vivo significantly reduced neutrophil infiltration. In vitro, production of MIP-2, but not that of KC, was enhanced in the nCA-stimulated neutrophils from MPO−/− mice, concomitant with up-regulation of Syk and ERK1/2. At 1 and 3 days after nCA administration, MPO−/− mice had significantly higher lung concentrations of TNF-α and IL-1β than wild-type mice.

Conclusion

Pulmonary administration of nCA produced an altered inflammatory response in MPO−/− mice relative to wild-type mice. Enhanced MIP-2 production by MPO−/− neutrophils may at least partly contribute to exacerbated inflammation in mutant mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown GD. Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol. 2011;29:1–21.

    Article  PubMed  CAS  Google Scholar 

  2. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77:598–625.

    Article  PubMed  CAS  Google Scholar 

  3. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93:185–98.

    Article  PubMed  CAS  Google Scholar 

  4. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun. 1999;67:1828–36.

    PubMed  CAS  Google Scholar 

  5. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Ishida-Okawara A, et al. Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans. J Med Microbiol. 2006;55:1291–9.

    Article  PubMed  CAS  Google Scholar 

  6. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol. 2002;40:557–63.

    PubMed  CAS  Google Scholar 

  7. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis. 2002;185:1833–7.

    Article  PubMed  CAS  Google Scholar 

  8. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, et al. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis. 2000;182:1276–9.

    Article  PubMed  CAS  Google Scholar 

  9. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med. 1997;185:207–18.

    Article  PubMed  CAS  Google Scholar 

  10. Segal BH, Han W, Bushey JJ, Joo M, Bhatti Z, Feminella J, et al. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One. 2010;5:e9631.

    Article  PubMed  Google Scholar 

  11. Petersen JE, Hiran TS, Goebel WS, Johnson C, Murphy RC, Azmi FH, et al. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. J Invest Dermatol. 2002;118:424–9.

    Article  PubMed  CAS  Google Scholar 

  12. Komatsu J, Koyama H, Maeda N, Aratani Y. Earlier onset of neutrophil-mediated inflammation in the ultraviolet-exposed skin of mice deficient in myeloperoxidase and NADPH oxidase. Inflamm Res. 2006;55:200–6.

    Article  PubMed  CAS  Google Scholar 

  13. Takeuchi K, Umeki Y, Matsumoto N, Yamamoto K, Yoshida M, Suzuki K, et al. Severe neutrophil-mediated lung inflammation in myeloperoxidase-deficient mice exposed to zymosan. Inflamm Res. 2012;61:197–205.

    Article  PubMed  CAS  Google Scholar 

  14. Tateno N, Matsumoto N, Motowaki T, Suzuki K, Aratani Y. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils. Free Radic Res. 2013;47:376–85.

    Article  PubMed  CAS  Google Scholar 

  15. Shepherd MG, Sullivan PA. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture. J Gen Microbiol. 1976;93:361–70.

    Article  PubMed  CAS  Google Scholar 

  16. Hida S, Miura NN, Adachi Y, Ohno N. Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice. J Autoimmun. 2005;25:93–101.

    Article  PubMed  CAS  Google Scholar 

  17. Yi C, Cao Y, Mao SH, Liu H, Ji LL, Xu SY, et al. Recombinant human growth hormone improves survival and protects against acute lung injury in murine Staphylococcus aureus sepsis. Inflamm Res. 2009;58:855–62.

    Article  PubMed  CAS  Google Scholar 

  18. Konrad FM, Reutershan J. CXCR2 in acute lung injury. Mediators Inflamm. 2012;2012:740987.

    Article  PubMed  CAS  Google Scholar 

  19. Rollins BJ. Chemokines. Blood. 1997;90:909–28.

    PubMed  CAS  Google Scholar 

  20. Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, et al. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J Exp Med. 1990;172:911–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lee J, Cacalano G, Camerato T, Toy K, Moore MW, Wood WI. Chemokine binding and activities mediated by the mouse IL-8 receptor. J Immunol. 1995;155:2158–64.

    PubMed  CAS  Google Scholar 

  22. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.

    Article  PubMed  CAS  Google Scholar 

  23. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.

    Article  PubMed  CAS  Google Scholar 

  24. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–17.

    Article  PubMed  CAS  Google Scholar 

  25. Slack EC, Robinson MJ, Hernanz-Falcon P, Brown GD, Williams DL, Schweighoffer E, et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol. 2007;37:1600–12.

    Article  PubMed  CAS  Google Scholar 

  26. Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 2005;1:e42.

    Article  PubMed  Google Scholar 

  27. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996;156:1235–46.

    PubMed  CAS  Google Scholar 

  28. Sato T, Iwabuchi K, Nagaoka I, Adachi Y, Ohno N, Tamura H, et al. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J Leukoc Biol. 2006;80:204–11.

    Article  PubMed  CAS  Google Scholar 

  29. Van Ziffle JA, Lowell CA. Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection. Blood. 2009;114:4871–82.

    Article  PubMed  Google Scholar 

  30. Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.

    Article  PubMed  CAS  Google Scholar 

  31. Farnand AW, Eastman AJ, Herrero R, Hanson JF, Mongovin S, Altemeier WA, et al. Fas activation in alveolar epithelial cells induces KC (CXCL1) release by a MyD88-dependent mechanism. Am J Respir Cell Mol Biol. 2011;45:650–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sharma AK, Fernandez LG, Awad AS, Kron IL, Laubach VE. Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-alpha during pulmonary ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2007;293:L105–13.

    Article  PubMed  CAS  Google Scholar 

  33. Ortiz LA, Lasky J, Hamilton RF Jr, Holian A, Hoyle GW, Banks W, et al. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung Res. 1998;24:721–43.

    Article  PubMed  CAS  Google Scholar 

  34. Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature. 1990;344:245–7.

    Article  PubMed  CAS  Google Scholar 

  35. Ramos CD, Fernandes KS, Canetti C, Teixeira MM, Silva JS, Cunha FQ. Neutrophil recruitment in immunized mice depends on MIP-2 inducing the sequential release of MIP-1alpha, TNF-alpha and LTB(4). Eur J Immunol. 2006;36:2025–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Minami Sugimura for technical support. This work was supported in part by JSPS KAKENHI Grant number 23580406, and a grant from the Japanese Ministry of Health, Labor and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Aratani.

Additional information

Responsible Editor: Mauro Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homme, M., Tateno, N., Miura, N. et al. Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans . Inflamm. Res. 62, 981–990 (2013). https://doi.org/10.1007/s00011-013-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0656-6

Keywords

Navigation