Skip to main content

Advertisement

Log in

“Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-κB activation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ubiquitination has emerged over the years as the most sophisticated way to modify proteins to affect their fate and function. In particular, it has been reported to be instrumental in regulating several steps of the NF-κB signalling pathway which controls inflammation, immunity, adhesion and cell survival. Integrating ubiquitination into NF-κB activation requires the regulatory subunit of IKK, NEMO, which not only displays affinity for polyubiquitin chains, but is also posttranslationally modified by a complex set of reactions involving ubiquitin. Here, we examine how studies of the NEMO/ubiquitin relationship have provided novel insights into the IKK activation process and have uncovered molecular mechanisms that should represent in the future attractive targets for specifically modulating NF-κB function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seo J, Lee KJ (2004) Post-translational modifications and their biological functions: proteomic analysis and systemic approaches. J Biochem Mol Biol 37:35–44

    CAS  PubMed  Google Scholar 

  2. Ptacek J, Snyder M (2006) Charging it up: global analysis of protein phosphorylation. Trends Genet 22:545–554

    Article  CAS  PubMed  Google Scholar 

  3. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  4. Pickart CM, Eddins MJ (2004) Ubiquitin : structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  CAS  PubMed  Google Scholar 

  5. Nijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786

    Article  CAS  PubMed  Google Scholar 

  6. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 3:275–286

    Article  Google Scholar 

  7. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 5:937–953

    Article  Google Scholar 

  8. Tait SW, de Vries E, Maas C, Keller AM, D’Santos CS, Borst J (2007) Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. J Cell Biol 7:1453–1466

    Article  Google Scholar 

  9. Hofmann RM, Pickart CM (1999) Non-canonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 5:645–653

    Article  Google Scholar 

  10. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 7260:114–119

    Article  Google Scholar 

  11. Liu F, Walters KJ (2010) Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci (in press) (doi:10.1016/j.tibs.2010.01.002)

  12. Mueller TD, Kamionka M, Feigon J (2004) Specificity of the interaction between ubiquitin-associated domains and ubiquitin. J Biol Chem 279:11926–11936

    Article  CAS  PubMed  Google Scholar 

  13. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 3:361–372

    Google Scholar 

  14. Mueller TD, Feigon J (2002) Solution structures of UBA domains reveal a conserved hydrophobic surface for protein–protein interactions. J Mol Biol 319:1243–1255

    Article  CAS  PubMed  Google Scholar 

  15. Sims JJ, Cohen RE (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 33:775–783

    Article  CAS  PubMed  Google Scholar 

  16. Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 20:4877–4887

    Article  Google Scholar 

  17. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura M, Tokunaga F, Sakata S, Iwai K (2006) Mutual regulation of conventional protein kinase C and a ubiquitin ligase complex. Biochem Biophys Res Commun 351:340–347

    Article  CAS  PubMed  Google Scholar 

  19. Bayle J, Lopez S, Iwai K, Dubreuil P, De Sepulveda P (2006) The E3 ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Lett 580:2609–2614

    Article  CAS  PubMed  Google Scholar 

  20. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  21. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  22. Scheidereit C (2006) IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25:6685–6705

    Article  CAS  PubMed  Google Scholar 

  23. Bagnéris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T (2008) Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome. Mol Cell 3:620–631

    Article  Google Scholar 

  24. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  25. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M (2001) Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293:1495–1499

    Article  CAS  PubMed  Google Scholar 

  26. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548

    Article  CAS  PubMed  Google Scholar 

  27. Silke J, Brink R (2009) Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 17:35–45

    Article  Google Scholar 

  28. Yamazaki K, Gohda J, Kanayama A, Miyamoto Y, Sakurai H, Yamamoto M, Akira S, Hayashi H, Su B, Inoue J (2009) Two mechanistically and temporally distinct NF-κB activation pathways in IL-1 signaling. Sci Signal 2:ra66

    Google Scholar 

  29. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-κB activation. Nat Cell Biol 8:398–406

    Article  CAS  PubMed  Google Scholar 

  30. Verstrepen L, Carpentier I, Verhelst K, Beyaert R (2009) ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochem Pharmacol 78:105–114

    Article  CAS  PubMed  Google Scholar 

  31. Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFα-induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443

    Article  CAS  PubMed  Google Scholar 

  32. Mankouri J, Fragkoudis R, Richards KH, Wetherill LF, Harris M, Kohl A, Elliott RM, Macdonald A (2010) Optineurin negatively regulates the induction of IFNβ in response to RNA virus infection. PLoS Path 6:e1000776

    Article  Google Scholar 

  33. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:1–13

    Article  Google Scholar 

  34. Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israël A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet 27:277–285

    Article  PubMed  Google Scholar 

  35. Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, Davidson AJ, Callus BA, Wong WW, Gentle IE, Carter H, Lee EF, Walczak H, Day CL, Vaux DL, Silke J (2010) TRAF2 must bind to cIAPs for TNF to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J Biol Chem 284:35906–35915

    Article  Google Scholar 

  36. Oeckinghaus A, Wegener E, Welteke V, Ferch U, Arslan SC, Ruland J, Scheidereit C, Krappmann D (2007) Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J 26:4634–4645

    Article  CAS  PubMed  Google Scholar 

  37. Wu CJ, Ashwell JD (2008) NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation. Proc Natl Acad Sci U S A 105:3023–3028

    Article  CAS  PubMed  Google Scholar 

  38. Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD (2008) Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-κB activation. Mol Cell Biol 28:3538–3547

    Article  CAS  PubMed  Google Scholar 

  39. Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y (2008) TRAF6 autoubiquitination-independent activation of the NFκB and MAPK pathways in response to IL-1 and RANKL. PLoS One 3:e4064

    Article  PubMed  Google Scholar 

  40. Windheim M, Stafford M, Peggie M, Cohen P (2008) Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IκBα kinase. Mol Cell Biol 28:1783–1791

    Article  CAS  PubMed  Google Scholar 

  41. Lo YC, Lin SY, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H (2009) Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33:602–615

    Article  CAS  PubMed  Google Scholar 

  42. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136:1098–1109

    Article  CAS  PubMed  Google Scholar 

  43. Yoshikawa A, Sato Y, Yamashita M, Mimura H, Yamagata A, Fukai S (2009) Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 583:3317–3322

    Article  CAS  PubMed  Google Scholar 

  44. Grubisha O, Kaminska M, Duquerroy S, Fontan E, Cordier F, Haouz A, Raynal B, Chiaravalli J, Delepierre M, Israël A, Véron M, Agou F (2010) DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J Mol Biol 395:89–104

    Article  CAS  PubMed  Google Scholar 

  45. Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F (2009) The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem 284:2902–2907

    Article  CAS  PubMed  Google Scholar 

  46. Courtois G, Smahi A (2006) NF-κB-related genetic diseases. Cell Death Differ 13:843–851

    Article  CAS  PubMed  Google Scholar 

  47. Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Véron M, Agou F, Israël A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28:2885–2895

    Article  CAS  PubMed  Google Scholar 

  48. Zhou H, Wertz I, O’Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427:167–171

    Article  CAS  PubMed  Google Scholar 

  49. Bidère N, Snow AL, Sakai K, Zheng L, Lenardo MJ (2006) Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-κB activation. Curr Biol 16:1666–1671

    Article  PubMed  Google Scholar 

  50. Ni CY, Wu ZH, Florence WC, Parekh VV, Arrate MP, Pierce S, Schweitzer B, Van Kaer L, Joyce S, Miyamoto S, Ballard DW, Oltz EM (2008) K63-linked polyubiquitination of NEMO modulates TLR signaling and inflammation in vivo. J Immunol 180:7107–7111

    CAS  PubMed  Google Scholar 

  51. Abbott DW, Wilkins A, Asara JM, Cantley LC (2004) The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 14:2217–2227

    Article  CAS  PubMed  Google Scholar 

  52. Kanneganti TD, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    Article  CAS  PubMed  Google Scholar 

  53. Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G (2007) Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti. Hum Mol Genet 16:2805–2815

    Article  CAS  PubMed  Google Scholar 

  54. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 11:123–132

    Article  CAS  PubMed  Google Scholar 

  55. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834

    Article  CAS  PubMed  Google Scholar 

  56. Marlovits TC, Stebbins CE (2010) Type III secretion systems shape up as they ship out. Curr Opin Microbiol 13:47–52

    Article  CAS  PubMed  Google Scholar 

  57. Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 15:77–83

    Article  Google Scholar 

  58. Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C (2010) A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol 12:166–173

    Article  Google Scholar 

  59. Wu ZH, Miyamoto S (2007) Many faces of NF-κB signaling induced by genotoxic stress. J Mol Med 85:1187–1202

    Article  CAS  PubMed  Google Scholar 

  60. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115:565–576

    Article  CAS  PubMed  Google Scholar 

  61. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  CAS  PubMed  Google Scholar 

  62. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424:793–796

    Article  CAS  PubMed  Google Scholar 

  63. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424:801–805

    Article  CAS  PubMed  Google Scholar 

  64. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Hofmann B, Siebert R, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25:160–165

    Article  CAS  PubMed  Google Scholar 

  65. Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, Barford D (2008) The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 29:451–464

    Article  CAS  PubMed  Google Scholar 

  66. Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 17:25–34

    Article  CAS  PubMed  Google Scholar 

  67. Reiley W, Zhang M, Wu X, Granger E, Sun SC (2005) Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol Cell Biol 25:3886–3895

    Article  CAS  PubMed  Google Scholar 

  68. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC, Cantley LC (2009) Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKε promotes cell transformation. Mol Cell 34:461–472

    Article  CAS  PubMed  Google Scholar 

  69. Vereecke L, Beyaert R, Van Loo G (2009) The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 30:383–391

    Article  CAS  PubMed  Google Scholar 

  70. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW (2009) The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J 28:513–522

    Article  CAS  PubMed  Google Scholar 

  71. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A (2006) ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 281:18482–18488

    Article  CAS  PubMed  Google Scholar 

  72. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Matsuzawa A, Brown SA, Zhou J, Guy CS, Tseng PH, Forbes K, Nicholson TP, Sheppard PW, Häcker H, Karin M, Vignali DA (2008) Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 105:20197–20202

    Article  CAS  PubMed  Google Scholar 

  74. Courtois G, Israël A (2010) IKK regulation and human genetics. Current Topics in Microbiology and Immunology. Springer, Berlin (in press)

Download references

Acknowledgments

We apologize to all colleagues whose papers could not be cited owing to space limitations. Work in G.C.’s laboratory is supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Agence Nationale pour la Recherche (ANR) and Association pour la Recherche sur le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Courtois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautheron, J., Courtois, G. “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-κB activation. Cell. Mol. Life Sci. 67, 3101–3113 (2010). https://doi.org/10.1007/s00018-010-0404-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0404-9

Keywords

Navigation