Skip to main content
Log in

Characterization of murine non-adherent bone marrow cells leading to recovery of endogenous hematopoiesis

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Non-adherent bone marrow-derived cells (NA-BMCs) are a mixed cell population that can give rise to multiple mesenchymal phenotypes and that facilitates hematopoietic recovery. We characterized NA-BMCs by flow cytometry, fibroblast colony-forming units (CFU-f), real-time PCR, and in in vivo experiments. In comparison to adherent cells, NA-BMCs expressed high levels of CD11b+ and CD90+ within the CD45+ cell fraction. CFU-f were significantly declining over the cultivation period, but NA-BMCs were still able to form CFU-f after 5 days. Gene expression analysis of allogeneic NA-BMCs compared to bone marrow (BM) indicates that NA-BMCs contain stromal, mesenchymal, endothelial cells and monocytes, but less osteoid, lymphoid, and erythroid cells, and hematopoietic stem cells. Histopathological data and analysis of weight showed an excellent recovery and organ repair of lethally irradiated mice after NA-BMC transplantation with a normal composition of the BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NA-BMCs:

Non-adherent bone marrow-derived cells

CFU-f:

Fibroblast colony forming units

HSC:

Hematopoietic stem cells

TTG mice:

Triple trangenic mice

BMCs:

Bone marrow cells

HSCT:

Hematopoietic stem cell transplantation

GvHD:

Graft versus host disease

MSC:

Mesenchymal stem cells

References

  1. Zhang ZL, Tong J, Lu RN, Scutt AM, Goltzman D, Miao DS (2009) Therapeutic potential of non-adherent BM-derived mesenchymal stem cells in tissue regeneration. Bone Marrow Transplant 43:69–81

    Article  CAS  PubMed  Google Scholar 

  2. Fricke S, Ackermann M, Stolzing A, Schimmelpfennig C, Hilger N, Jahns J, Hildebrandt G, Emmrich F, Ruschpler P, Pösel C, Kamprad M, Sack U (2009) Allogeneic non-adherent bone marrow cells facilitate hematopoietic recovery but do not lead to allogeneic engraftment. PLoS One 4:e6157

    Article  PubMed  Google Scholar 

  3. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–491

    Article  CAS  PubMed  Google Scholar 

  4. Zhang ZX, Wang RZ, Li GL, Dou WC, Li SF, Wei JJ, Wei YK, Zhao FF, Kong YG, Wu HT, Fan M (2006) Study on trans-differentiation of adult human myoblasts into neural precursor cells and its implantation in rats. Zhonghua Yi Xue Za Zhi 86:2756–2760

    CAS  PubMed  Google Scholar 

  5. Clarke E, McCann SR (1991) Stromal colonies can be grown from the non-adherent cells in human long-term bone marrow cultures. Eur J Haematol 46:296–300

    Article  CAS  PubMed  Google Scholar 

  6. Scutt A, Zeschnigk M, Bertram P (1995) PGE2 induces the transition from non-adherent to adherent bone marrow mesenchymal precursor cells via a cAMP/EP2-mediated mechanism. Prostaglandins 49:383–395

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari G, Cusella-De AG, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  CAS  PubMed  Google Scholar 

  8. Wlodarski KH, Galus R, Wlodarski P (2004) Non-adherent bone marrow cells are a rich source of cells forming bone in vivo. Folia Biol (Praha) 50:167–173

    CAS  Google Scholar 

  9. Laub R, Dorsch M, Meyer D, Ermann J, Hedrich HJ, Emmrich F (2000) A multiple transgenic mouse model with a partially humanized activation pathway for helper T cell responses. J Immunol Methods 246:37–50

    Article  CAS  PubMed  Google Scholar 

  10. Laub R, Dorsch M, Wenk K, Emmrich F (2001) Induction of immunologic tolerance to tetanus toxoid by anti-human CD4 in HLA-DR3(+)/human CD4(+)/murine CD4(−) multiple transgenic mice. Transplant Proc 33:2182–2183

    Article  CAS  PubMed  Google Scholar 

  11. Pierelli L, Bonanno G, Rutella S, Marone M, Scambia G, Leone G (2001) CD105 (endoglin) expression on hematopoietic stem/progenitor cells. Leuk Lymphoma 42:1195–1206

    Article  CAS  PubMed  Google Scholar 

  12. Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M (2001) Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992

    Article  CAS  PubMed  Google Scholar 

  14. Kawai K, Tsuno NH, Matsuhashi M, Kitayama J, Osada T, Yamada J, Tsuchiya T, Yoneyama S, Watanabe T, Takahashi K, Nagawa H (2005) CD11b-mediated migratory property of peripheral blood B cells. J Allergy Clin Immunol 116:192–197

    Article  CAS  PubMed  Google Scholar 

  15. Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T, Nakauchi H, Nishikawa S (1991) Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 174:63–71

    Article  CAS  PubMed  Google Scholar 

  16. Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214:3–9

    Article  CAS  PubMed  Google Scholar 

  17. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    CAS  PubMed  Google Scholar 

  18. Otero DC, Anzelon AN, Rickert RC (2003) CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. J Immunol 170:73–83

    CAS  PubMed  Google Scholar 

  19. Lange C, Li Z, Fang L, Baum C, Fehse B (2007) CD34 modulates the trafficking behavior of hematopoietic cells in vivo. Stem Cells Dev 16:297–304

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen JS, McNagny KM (2009) CD34 is a key regulator of hematopoietic stem cell trafficking to bone marrow and mast cell progenitor trafficking in the periphery. Microcirculation 16:487–496

    Article  CAS  PubMed  Google Scholar 

  21. Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313

    Article  CAS  PubMed  Google Scholar 

  22. Earl LA, Baum LG (2008) CD45 glycosylation controls T-cell life and death. Immunol Cell Biol 86:608–615

    Article  CAS  PubMed  Google Scholar 

  23. Wiesmann A, Buhring HJ, Mentrup C, Wiesmann HP (2006) Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med 2:8

    Article  PubMed  Google Scholar 

  24. Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10:1408–1417

    CAS  PubMed  Google Scholar 

  25. Ghosh S, Pendurthi UR, Steinoe A, Esmon CT, Rao LV (2007) Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium. J Biol Chem 282:11849–11857

    Article  CAS  PubMed  Google Scholar 

  26. Balazs AB, Fabian AJ, Esmon CT, Mulligan RC (2006) Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107:2317–2321

    Article  CAS  PubMed  Google Scholar 

  27. Tang XB, Liu DP, Liang CC (2001) Regulation of the transcription factor GATA-1 at the gene and protein level. Cell Mol Life Sci 58:2008–2017

    Article  CAS  PubMed  Google Scholar 

  28. Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM (1991) Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 10:1187–1192

    CAS  PubMed  Google Scholar 

  29. Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17:42–49

    Article  CAS  PubMed  Google Scholar 

  30. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  CAS  PubMed  Google Scholar 

  31. Ito M, Anan K, Misawa M, Kai S, Hara H (1996) In vitro differentiation of murine Sca-1+Lin− cells into myeloid, B cell and T cell lineages. Stem Cells 14:412–418

    Article  CAS  PubMed  Google Scholar 

  32. Bradfute SB, Graubert TA, Goodell MA (2005) Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp Hematol 33:836–843

    Article  CAS  PubMed  Google Scholar 

  33. Laub R, Dorsch M, Wedekind D, Meyer D, Schroder S, Ermann J, Lehmann J, Mahler M, Emmrich F, Hedrich HJ (1999) Replacement of murine by human CD4 and introduction of HLA-DR17 in mice: a triple-transgenic animal model to study human MHC II-CD4 interaction in situ. J Exp Anim Sci 39:122–135

    Google Scholar 

  34. Dobson KR, Reading L, Haberey M, Marine X, Scutt A (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif Tissue Int 65:411–413

    Article  CAS  PubMed  Google Scholar 

  35. Tschetter JR, Mozes E, Shearer GM (2000) Progression from acute to chronic disease in a murine parent-into-F1 model of graft-versus-host disease. J Immunol 165:5987–5994

    CAS  PubMed  Google Scholar 

  36. Cooke KR, Hill GR, Crawford JM, Bungard D, Brinson YS, Delmonte J Jr, Ferrara JL (1998) Tumor necrosis factor- alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest 102:1882–1891

    Article  CAS  PubMed  Google Scholar 

  37. Vela-Ojeda J, Montiel-Cervantes L, Granados-Lara P, Reyes-Maldonado E, Garcia-Latorre E, Garcia-Chavez J, Majluf-Cruz A, Mayani H, Borbolla-Escoboza JR, Garcia-Ruiz EM (2009) Role of CD4+, CD25+, highFoxp3+, CD62L+ regulatory T cells and invariant NKT cells in human allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. doi:10.1089/scd.2005.14.310

  38. Orasch C, Weisser M, Mertz D, Conen A, Heim D, Christen S, Gratwohl A, Battegay, M, Widmer A, Fluckiger U (2009) Comparison of infectious complications during induction/consolidation chemotherapy versus allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. doi:10.1038/bmt.2009.187

  39. Fuhrer M, Claviez A, Klein B, Humpe A, Schrauder A (2009) Re-transplantation from the same unrelated donor in three adolescents with severe aplastic anemia after graft rejection. Klin Padiatr 221:358–361

    Article  CAS  PubMed  Google Scholar 

  40. Gratwohl A, Baldomero H (2009) Trends of hematopoietic stem cell transplantation in the third millennium. Curr Opin Hematol 16:420–426

    Article  PubMed  Google Scholar 

  41. Tian Y, Deng YB, Huang YJ, Wang Y (2008) Bone marrow-derived mesenchymal stem cells decrease acute graft-versus-host disease after allogeneic hematopoietic stem cells transplantation. Immunol Invest 37:29–42

    Article  CAS  PubMed  Google Scholar 

  42. Kuhn NZ, Tuan RS (2009) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222:268–277

    Article  Google Scholar 

  43. Le BK, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  Google Scholar 

  44. Hansen W, Westendorf AM, Buer J (2008) Regulatory T cells as targets for immunotherapy of autoimmunity and inflammation. Inflamm Allergy Drug Targets 7:217–223

    Article  CAS  PubMed  Google Scholar 

  45. Hoffmann P, Ermann J, Edinger M (2005) CD4+CD25+ regulatory T cells in hematopoietic stem cell transplantation. Curr Top Microbiol Immunol 293:265–285

    Article  CAS  PubMed  Google Scholar 

  46. Blache C, Chauvin JM, Marie-Cardine A, Contentin N, Pommier P, Dedreux I, Francois S, Jacquot S, Bastit D, Boyer O (2009) Reduced frequency of regulatory T cells in peripheral blood stem cell as compared to bone marrow transplants. Biol Blood Marrow Transplant. doi:10.1016/j.bbmt.2009.10.027

  47. Edinger M (2008) CD4+CD25+ regulatory T cells approach the clinic. Cytotherapy 10:655–656

    Article  CAS  PubMed  Google Scholar 

  48. Chroma Werksschrift (1962) Ausgewählte Färbemethoden für Botanik, Parasitologie, Zoologie, Chroma-Ges. Schmid, Stuttgart-Untertürkheim

Download references

Acknowledgments

We thank Mr. Jan Matthias Braun, PhD, Translational Centre for Regenerative Medicine, Universität Leipzig and his colleagues for providing and breeding the triple transgenic (TTG) mice, Ms. Stephanie Tuche and Ms. Ramona Blaschke for preparation of the histological slides, Mr. Guido Hildebrandt for preparing irradiation of recipient mice, and Ms. Manuela Ackermann for preparing flow cytometry. The work presented in this paper was funded by the German Federal Ministry of Education and Research (BMBF 0313452, PtJ-Bio, 0313909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Fricke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, S., Fricke, C., Oelkrug, C. et al. Characterization of murine non-adherent bone marrow cells leading to recovery of endogenous hematopoiesis. Cell. Mol. Life Sci. 67, 4095–4106 (2010). https://doi.org/10.1007/s00018-010-0427-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0427-2

Keywords

Navigation