Skip to main content
Log in

Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GPHR:

Glycoprotein hormone receptor

LHCGR:

Lutropin/choriogonadotropin receptor

FSHR:

Follicle stimulating hormone receptor

TSHR:

Thyroid stimulating hormone receptor

bTSH:

Bovine thyroid stimulating hormone

LH:

Luteinizing hormone

CG:

Choriogonadotropin

FSH:

Follicle stimulating hormone

GPCR:

G-protein-coupled receptor

TMH:

Transmembrane helix

ECL1/2/3:

Extracellular loops 1/2/3

ICLs 1/2/3:

Intracellular loops 1/2/3

LRRD:

Leucine-rich repeat domain

SD:

Serpentine domain

CAM:

Constitutively activating mutation

LGRs:

Leucine-rich repeat containing GPCRs

7TMRs:

Seven-transmembrane spanning receptors

c52:

Compound 52

org41841:

Organon 41841

DMEM:

Dulbecco’s modified Eagle’s medium

PBS:

Phosphate buffered saline

IP:

Inositol phosphate

References

  1. Foord SM (2002) Receptor classification: post genome. Curr Opin Pharmacol 2:561–566

    Article  CAS  PubMed  Google Scholar 

  2. Kosugi S, Sugawa H, Mori T (1996) TSH receptor and LH receptor. Endocr J 43:595–604

    Google Scholar 

  3. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM (1998) The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev 19:673–716

    Article  CAS  PubMed  Google Scholar 

  4. Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611

    CAS  PubMed  Google Scholar 

  5. De Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M (2010) TSH receptor activation and body composition. J Endocrinol 204:13–20

    Article  PubMed  Google Scholar 

  6. Eckstein AK, Johnson KT, Thanos M, Esser J, Ludgate M (2009) Current insights into the pathogenesis of Graves’ orbitopathy. Horm Metab Res 41:456–464

    Article  CAS  PubMed  Google Scholar 

  7. Balzan S, Nicolini G, Forini F, Boni G, Del Carratore R, Nicolini A, Carpi A, Iervasi G (2007) Presence of a functional TSH receptor on human erythrocytes. Biomed Pharmacother 61:463–467

    Article  CAS  PubMed  Google Scholar 

  8. Agretti P, Chiovato L, De Marco G, Marcocci C, Mazzi B, Sellari-Franceschini S, Vitti P, Pinchera A, Tonacchera M (2002) Real-time PCR provides evidence for thyrotropin receptor mRNA expression in orbital as well as in extraorbital tissues. Eur J Endocrinol 147:733–739

    Article  CAS  PubMed  Google Scholar 

  9. Busuttil BE, Frauman AG (2001) Extrathyroidal manifestations of Graves’ disease: the thyrotropin receptor is expressed in extraocular, but not cardiac, muscle tissues. J Clin Endocrinol Metab 86:2315–2319

    Article  CAS  PubMed  Google Scholar 

  10. Bahn RS, Dutton CM, Natt N, Joba W, Spitzweg C, Heufelder AE (1998) Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J Clin Endocrinol Metab 83:998–1002

    Article  CAS  PubMed  Google Scholar 

  11. Dutton CM, Joba W, Spitzweg C, Heufelder AE, Bahn RS (1997) Thyrotropin receptor expression in adrenal, kidney, and thymus. Thyroid 7:879–884

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Baker G, Janus D, Paddon CA, Fuhrer D, Ludgate M (2006) Biological effects of thyrotropin receptor activation on human orbital preadipocytes. Invest Ophthalmol Vis Sci 47:5197–5203

    Article  PubMed  Google Scholar 

  13. Sun SC, Hsu PJ, Wu FJ, Li SH, Lu CH, Luo CW (2010) Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J Biol Chem 285:3758–3765

    Article  CAS  PubMed  Google Scholar 

  14. Aghajanova L, Lindeberg M, Carlsson IB, Stavreus-Evers A, Zhang P, Scott JE, Hovatta O, Skjoldebrand-Sparre L (2009) Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 18:337–347

    Article  CAS  PubMed  Google Scholar 

  15. Szkudlinski MW, Fremont V, Ronin C, Weintraub BD (2002) Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure–function relationships. Physiol Rev 82:473–502

    CAS  PubMed  Google Scholar 

  16. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    Article  PubMed  Google Scholar 

  17. Rodien P, Ho SC, Vlaeminck V, Vassart G, Costagliola S (2003) Activating mutations of TSH receptor. Ann Endocrinol (Paris) 64:12–16

    CAS  Google Scholar 

  18. Michalek K, Morshed SA, Latif R, Davies TF (2009) TSH receptor autoantibodies. Autoimmun Rev 9:113–116

    Article  CAS  PubMed  Google Scholar 

  19. Latif R, Morshed SA, Zaidi M, Davies TF (2009) The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 38:319–341 viii

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Jimenez C, Santisteban P (2007) TSH signalling and cancer. Arq Bras Endocrinol Metabol 51:654–671

    PubMed  Google Scholar 

  21. Duprez L, Parma J, Van Sande J, Rodien P, Sabine C, Abramowicz M, Dumont JE, Vassart G (1999) Pathology of the TSH receptor. J Pediatr Endocrinol Metab 12(Suppl 1):295–302

    PubMed  Google Scholar 

  22. Davies TF, Ando T, Lin RY, Tomer Y, Latif R (2005) Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest 115:1972–1983

    Article  CAS  PubMed  Google Scholar 

  23. Corvilain B, Van Sande J, Dumont JE, Vassart G (2001) Somatic and germline mutations of the TSH receptor and thyroid diseases. Clin Endocrinol (Oxf) 55:143–158

    CAS  Google Scholar 

  24. Chen CR, McLachlan SM, Rapoport B (2007) Suppression of thyrotropin receptor constitutive activity by a monoclonal antibody with inverse agonist activity. Endocrinology 148:2375–2382

    Article  CAS  PubMed  Google Scholar 

  25. Ando T, Davies TF (2005) Monoclonal antibodies to the thyrotropin receptor. Clin Dev Immunol 12:137–143

    Article  CAS  PubMed  Google Scholar 

  26. Alberti L, Proverbio MC, Costagliola S, Romoli R, Boldrighini B, Vigone MC, Weber G, Chiumello G, Beck-Peccoz P, Persani L (2002) Germline mutations of TSH receptor gene as cause of nonautoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 87:2549–2555

    Article  CAS  PubMed  Google Scholar 

  27. Kleinau G, Krause G (2009) Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 30:133–151

    Article  CAS  PubMed  Google Scholar 

  28. Moriyama K, Okuda J, Saijo M, Hattori Y, Kanamoto N, Hataya Y, Matsuda F, Mori T, Nakao K, Akamizu T (2003) Recombinant monoclonal thyrotropin-stimulation blocking antibody (TSBAb) established from peripheral lymphocytes of a hypothyroid patient with primary myxedema. J Endocrinol Invest 26:1076–1080

    CAS  PubMed  Google Scholar 

  29. Sanders J, Evans M, Betterle C, Sanders P, Bhardwaja A, Young S, Roberts E, Wilmot J, Richards T, Kiddie A, Small K, Platt H, Summerhayes S, Harris R, Reeve M, Coco G, Zanchetta R, Chen S, Furmaniak J, Smith BR (2008) A human monoclonal autoantibody to the thyrotropin receptor with thyroid-stimulating blocking activity. Thyroid 18:735–746

    Article  CAS  PubMed  Google Scholar 

  30. Beck-Peccoz P (2008) Antithyroid drugs are 65 years old: time for retirement? Endocrinology 149:5943–5944

    Article  CAS  PubMed  Google Scholar 

  31. Smith BR, Sanders J, Furmaniak J (2007) TSH receptor antibodies. Thyroid 17:923–938

    Article  CAS  PubMed  Google Scholar 

  32. Neumann S, Raaka BM, Gershengorn MC (2009) Human TSH receptor ligands as pharmacological probes with potential clinical application. Expert Rev Endocrinol Metabol 4:669–679

    Google Scholar 

  33. Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause G, Gershengorn MC (2008) A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 149:5945–5950

    Article  CAS  PubMed  Google Scholar 

  34. Neumann S, Huang W, Eliseeva E, Titus S, Thomas CJ, Gershengorn MC (2010) A small molecule inverse agonist for the human TSH receptor. Endocrinology. doi:10.1210/en.2010-0199

  35. Jaschke H, Neumann S, Moore S, Thomas CJ, Colson AO, Costanzi S, Kleinau G, Jiang JK, Paschke R, Raaka BM, Krause G, Gershengorn MC (2006) A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J Biol Chem 281:9841–9844

    Article  PubMed  Google Scholar 

  36. Moore S, Jaeschke H, Kleinau G, Neumann S, Costanzi S, Jiang JK, Childress J, Raaka BM, Colson A, Paschke R, Krause G, Thomas CJ, Gershengorn MC (2006) Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J Med Chem 49:3888–3896

    Article  CAS  PubMed  Google Scholar 

  37. Kleinau G, Haas AK, Neumann S, Worth CL, Hoyer I, Furkert J, Rutz C, Gershengorn MC, Schulein R, Krause G (2010) Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor. FASEB J. doi:10.1096/fj.09-149146

  38. Smith BJ, Wales MR, Perry MJ (1993) Assays of cyclic nucleotides: a review of current techniques. Appl Biochem Biotechnol 41:189–218

    Article  CAS  PubMed  Google Scholar 

  39. Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14

    Article  CAS  PubMed  Google Scholar 

  40. Kobilka B, Schertler GF (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 29:79–83

    Article  CAS  PubMed  Google Scholar 

  41. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  Google Scholar 

  42. Worth CL, Kleinau G, Krause G (2009) Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PloS One 4:e7011

    Article  PubMed  Google Scholar 

  43. Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19:386–395

    Article  CAS  PubMed  Google Scholar 

  44. Kleinau G, Jaeschke H, Mueller S, Worth CL, Paschke R, Krause G (2008) Molecular and structural effects of inverse agonistic mutations on signaling of the thyrotropin receptor—a basally active GPCR. Cell Mol Life Sci 65:3664–3676

    Article  CAS  PubMed  Google Scholar 

  45. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC (2009) Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci USA 106:12471–12476

    Article  CAS  PubMed  Google Scholar 

  46. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure–function relationships in G-protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  47. Gloriam DE, Foord SM, Blaney FE, Garland SL (2009) Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design. J Med Chem 52:4429–4442

    Article  CAS  PubMed  Google Scholar 

  48. Kleinau G, Claus M, Jaeschke H, Mueller S, Neumann S, Paschke R, Krause G (2007) Contacts between extracellular loop two and transmembrane helix six determine basal activity of the thyroid-stimulating hormone receptor. J Biol Chem 282:518–525

    Article  CAS  PubMed  Google Scholar 

  49. Kosugi S, Hai N, Okamoto H, Sugawa H, Mori T (2000) A novel activating mutation in the thyrotropin receptor gene in an autonomously functioning thyroid nodule developed by a Japanese patient. Eur J Endocrinol 143:471–477

    Article  CAS  PubMed  Google Scholar 

  50. van Straten NC, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AE, Timmers CM, Hanssen RG, van Boeckel CA (2002) The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochem 3:1023–1026

    Article  PubMed  Google Scholar 

  51. Heitman LH, Ijzerman AP (2008) G protein-coupled receptors of the hypothalamic-pituitary-gonadal axis: a case for Gnrh, LH, FSH, and GPR54 receptor ligands. Med Res Rev 28:975–1011

    Article  CAS  PubMed  Google Scholar 

  52. Tao YX (2006) Inactivating mutations of G protein-coupled receptors and diseases: structure–function insights and therapeutic implications. Pharmacol Ther 111:949–973

    Article  CAS  PubMed  Google Scholar 

  53. Kleinau G, Brehm M, Wiedemann U, Labudde D, Leser U, Krause G (2007) Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure–function analysis resource. Mol Endocrinol 21:574–580

    Article  CAS  PubMed  Google Scholar 

  54. Kleinau G, Kreuchwig A, Worth CL, Krause G (2010) An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors. Hum Mutat 31:E1519–E1525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (KR1273/4-1) and by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Krause.

Additional information

A.-K. Haas and G. Kleinau contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, AK., Kleinau, G., Hoyer, I. et al. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor. Cell. Mol. Life Sci. 68, 159–167 (2011). https://doi.org/10.1007/s00018-010-0451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0451-2

Keywords

Navigation