Skip to main content

Advertisement

Log in

How tumors might withstand γδ T-cell attack

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Several clinical trials are currently assessing the therapeutic activity of human TCRVγ9Vδ2+ lymphocytes in cancer. Growing tumors usually follow a triphasic “Elimination, Equilibrium, Escape” evolution in patients. Thus, at diagnostic, most tumors have already developed some means to escape to immune protection. We review here the conventional immunoescape mechanisms which might also protect against cytolytic TCRVγ9Vδ2+ lymphocytes activated by phosphoantigens. Neutralization of these deleterious processes might prove highly valuable to improve the efficacy of ongoing γδ cell-based cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kabelitz D, Wesch D, Pitters E, Zoller M (2004) Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol 173(11):6767–6776

    PubMed  CAS  Google Scholar 

  2. Zheng BJ, Ng SP, Chua DT, Sham JS, Kwong DL, Lam CK et al (2002) Peripheral gamma delta T-cell deficit in nasopharyngeal carcinoma. Int J Cancer 99(2):213–217

    Article  PubMed  CAS  Google Scholar 

  3. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G et al (2007) Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15):7450–7457

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T (2001) Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol Immunother 50(3):115–124

    Article  PubMed  CAS  Google Scholar 

  5. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102(1):200–206

    Article  PubMed  CAS  Google Scholar 

  6. Choudhary A, Davodeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F (1665) Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 154(8):3932–3940

    Google Scholar 

  7. Zocchi MR, Ferrarini M, Migone N, Casorati G (1994) T-cell receptor V delta gene usage by tumour reactive gamma delta T lymphocytes infiltrating human lung cancer. Immunology 81(2):234–239

    PubMed  CAS  Google Scholar 

  8. Wu NZ, Klitzman B, Dodge R, Dewhirst MW (1992) Diminished leukocyte–endothelium interaction in tumor microvessels. Cancer Res 52(15):4265–4268

    PubMed  CAS  Google Scholar 

  9. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14(1):28–36

    Article  PubMed  CAS  Google Scholar 

  10. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  PubMed  CAS  Google Scholar 

  11. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7(12):1339–1346

    Article  PubMed  CAS  Google Scholar 

  12. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  PubMed  CAS  Google Scholar 

  13. Viey E, Lucas C, Romagne F, Escudier B, Chouaib S, Caignard A (2008) Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 31(3):313–323

    Article  PubMed  CAS  Google Scholar 

  14. Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB et al (2003) Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood 102(10):3693–3701

    Article  PubMed  CAS  Google Scholar 

  15. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D (2002) Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 168(10):4920–4929

    PubMed  CAS  Google Scholar 

  16. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198(3):391–397

    Article  PubMed  CAS  Google Scholar 

  17. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2(3):175–184

    Article  PubMed  CAS  Google Scholar 

  18. Ruffini PA, Morandi P, Cabioglu N, Altundag K, Cristofanilli M (2007) Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer 109(12):2392–2404

    Article  PubMed  CAS  Google Scholar 

  19. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54

    Article  PubMed  CAS  Google Scholar 

  20. Jing N, Tweardy DJ (2005) Targeting Stat3 in cancer therapy. Anticancer Drugs 16(6):601–607

    Article  PubMed  CAS  Google Scholar 

  21. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414

    Article  PubMed  CAS  Google Scholar 

  22. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  PubMed  CAS  Google Scholar 

  23. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann TK, Muller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL (2002) Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8(6):1787–1793

    PubMed  Google Scholar 

  25. Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A et al (2003) Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89(8):1463–1472

    Article  PubMed  CAS  Google Scholar 

  26. Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73(3):309–316

    Article  PubMed  CAS  Google Scholar 

  27. Ismaili J, Olislagers V, Poupot R, Fournie JJ, Goldman M (2002) Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103(3 Pt 1):296–302

    Article  PubMed  CAS  Google Scholar 

  28. Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F et al (2005) Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol 174(1):252–260

    PubMed  CAS  Google Scholar 

  29. Devilder MC, Maillet S, Bouyge-Moreau I, Donnadieu E, Bonneville M, Scotet E (2006) Potentiation of antigen-stimulated V gamma 9V delta 2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol 176(3):1386–1393

    PubMed  CAS  Google Scholar 

  30. Cendron D, Ingoure S, Martino A, Casetti R, Horand F, Romagne F et al (2007) A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates. Eur J Immunol 37(2):549–565

    Article  PubMed  CAS  Google Scholar 

  31. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65

    Article  PubMed  CAS  Google Scholar 

  32. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    PubMed  CAS  Google Scholar 

  33. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244

    Article  PubMed  CAS  Google Scholar 

  34. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13(2 Pt 2):721s–726s

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939

    Article  PubMed  CAS  Google Scholar 

  36. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56(4):469–476

    Article  PubMed  CAS  Google Scholar 

  37. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C et al (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57(11):1599–1609

    Article  PubMed  CAS  Google Scholar 

  38. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8 + T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    PubMed  CAS  Google Scholar 

  39. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654

    Article  PubMed  CAS  Google Scholar 

  40. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  41. Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69(3):250–256

    Article  PubMed  CAS  Google Scholar 

  42. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  CAS  Google Scholar 

  43. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  PubMed  CAS  Google Scholar 

  44. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    PubMed  CAS  Google Scholar 

  45. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4):1484–1490

    Article  PubMed  CAS  Google Scholar 

  46. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36(10):2566–2573

    Article  PubMed  CAS  Google Scholar 

  47. Martinet L, Fleury-Cappellesso S, Gadelorge M, Dietrich G, Bourin P, Fournie JJ et al (2009) A regulatory cross-talk between Vgamma9Vdelta2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 39(3):752–762

    Article  PubMed  CAS  Google Scholar 

  48. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V (2009) Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27(3):693–702

    Article  PubMed  CAS  Google Scholar 

  49. Chemnitz JM, Driesen J, Classen S, Riley JL, Debey S, Beyer M et al (2006) Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin’s lymphoma. Cancer Res 66(2):1114–1122

    Article  PubMed  CAS  Google Scholar 

  50. Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R (2010) PGE(2) inhibits natural killer and gammadelta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol (in press)

  51. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608

    PubMed  CAS  Google Scholar 

  52. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318

    PubMed  CAS  Google Scholar 

  53. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC et al (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11(21):7749–7756

    Article  PubMed  CAS  Google Scholar 

  54. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–766

    Article  PubMed  CAS  Google Scholar 

  55. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  PubMed  CAS  Google Scholar 

  56. Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H et al (2009) Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett 274(1):61–71

    Article  PubMed  CAS  Google Scholar 

  57. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    Article  PubMed  CAS  Google Scholar 

  58. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M et al (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528

    Article  PubMed  CAS  Google Scholar 

  59. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J et al (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99(4):622–631

    Article  PubMed  CAS  Google Scholar 

  60. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    Article  PubMed  CAS  Google Scholar 

  61. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 9(3):239–244

    Article  PubMed  CAS  Google Scholar 

  62. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  PubMed  CAS  Google Scholar 

  63. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  64. Kunzmann V, Kimmel B, Herrmann T, Einsele H, Wilhelm M (2009) Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells. Immunology 126(2):256–267

    Article  PubMed  CAS  Google Scholar 

  65. Mahan CS, Thomas JJ, Boom WH, Rojas RE (2009) CD4+ CD25(high) Foxp3+ regulatory T cells downregulate human Vdelta2+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen. Immunology 127(3):398–407

    Article  PubMed  CAS  Google Scholar 

  66. Li L, Wu CY (2008) CD4+ CD25+ Treg cells inhibit human memory gammadelta T cells to produce IFN-gamma in response to M tuberculosis antigen ESAT-6. Blood 111(12):5629–5636

    Article  PubMed  CAS  Google Scholar 

  67. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  PubMed  CAS  Google Scholar 

  68. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL (2007) A unique subset of CD4+ CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13(15 Pt 1):4345–4354

    Article  PubMed  CAS  Google Scholar 

  69. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569

    Article  PubMed  CAS  Google Scholar 

  70. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646

    Article  PubMed  CAS  Google Scholar 

  71. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265

    Article  PubMed  CAS  Google Scholar 

  72. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212

    Article  PubMed  CAS  Google Scholar 

  73. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307

    Article  PubMed  CAS  Google Scholar 

  74. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59(13):3128–3133

    PubMed  CAS  Google Scholar 

  75. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK et al (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112(3):610–618

    Article  PubMed  CAS  Google Scholar 

  76. Powell DJ Jr, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T, Levy C et al (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179(7):4919–4928

    PubMed  CAS  Google Scholar 

  77. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67(1):371–380

    Article  PubMed  CAS  Google Scholar 

  78. Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56(10):1597–1604

    Article  PubMed  CAS  Google Scholar 

  79. Gong G, Shao L, Wang Y, Chen CY, Huang D, Yao S et al (2009) Phosphoantigen-activated V gamma 2 V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 113(4):837–845

    Article  PubMed  CAS  Google Scholar 

  80. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  81. Reiss M (1999) TGF-beta and cancer. Microbes Infect 1(15):1327–1347

    Article  PubMed  CAS  Google Scholar 

  82. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7(10):1118–1122

    Article  PubMed  CAS  Google Scholar 

  83. Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck U (1995) Regulation of NK cell functions by TGF-beta 1. J Immunol 155(3):1066–1073

    PubMed  CAS  Google Scholar 

  84. Rojas RE, Balaji KN, Subramanian A, Boom WH (1999) Regulation of human CD4(+) alphabeta T-cell-receptor-positive (TCR(+)) and gammadelta TCR(+) T-cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor beta. Infect Immun 67(12):6461–6472

    PubMed  CAS  Google Scholar 

  85. Capietto AH, Martinet L, Cendron D, Fruchon S, Pont F, Fournie JJ (2010) Phosphoantigens overcome human TCRVgamma9+gammadelta Cell immunosuppression by TGF-beta: relevance for cancer immunotherapy. J Immunol 184(12):6680–6687

    Article  PubMed  CAS  Google Scholar 

  86. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150

    Article  PubMed  CAS  Google Scholar 

  87. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617

    Article  PubMed  CAS  Google Scholar 

  88. Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skalhegg BS et al (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193(4):497–507

    Article  PubMed  CAS  Google Scholar 

  89. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J et al (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12):2637–2645

    Article  PubMed  CAS  Google Scholar 

  90. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18(55):7908–7916

    Article  PubMed  CAS  Google Scholar 

  91. Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635

    PubMed  CAS  Google Scholar 

  92. Viey E, Laplace C, Escudier B (2005) Peripheral gammadelta T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 5(6):973–986

    Article  PubMed  CAS  Google Scholar 

  93. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355(9):873–884

    Article  PubMed  CAS  Google Scholar 

  94. DeLong P, Tanaka T, Kruklitis R, Henry AC, Kapoor V, Kaiser LR et al (2003) Use of cyclooxygenase-2 inhibition to enhance the efficacy of immunotherapy. Cancer Res 63(22):7845–7852

    PubMed  CAS  Google Scholar 

  95. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352(11):1071–1080

    Article  PubMed  CAS  Google Scholar 

  96. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    PubMed  CAS  Google Scholar 

  97. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103(35):13132–13137

    Article  PubMed  CAS  Google Scholar 

  98. Raskovalova T, Lokshin A, Huang X, Jackson EK, Gorelik E (2006) Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol Res 36(1–3):91–99

    Article  PubMed  CAS  Google Scholar 

  99. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al (2004) Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114(2):280–290

    PubMed  CAS  Google Scholar 

  100. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274

    Article  PubMed  CAS  Google Scholar 

  101. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y et al (2005) Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11(16):6030–6039

    Article  PubMed  CAS  Google Scholar 

  102. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C et al (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12(4):1144–1151

    Article  PubMed  CAS  Google Scholar 

  103. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196(4):459–468

    Article  PubMed  CAS  Google Scholar 

  104. Della Chiesa M, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R et al (2006) The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108(13):4118–4125

    Article  PubMed  CAS  Google Scholar 

  105. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15(1):83–93

    Article  PubMed  CAS  Google Scholar 

  106. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T (2005) Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol 175(4):2144–2151

    PubMed  CAS  Google Scholar 

  107. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419(6908):734–738

    Article  PubMed  CAS  Google Scholar 

  108. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171(12):6891–6899

    PubMed  CAS  Google Scholar 

  109. Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J (2006) Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119(10):2359–2365

    Article  PubMed  CAS  Google Scholar 

  110. Sebti Y, Le riec G, Pangault C, Gros F, Drenou B, Guilloux V et al (2003) Soluble HLA-G molecules are increased in lymphoproliferative disorders. Hum Immunol 64(11):1093–1101

    Article  PubMed  CAS  Google Scholar 

  111. Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED (2005) HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 65(22):10139–10144

    Article  PubMed  CAS  Google Scholar 

  112. Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM (2007) Human leukocyte antigen G expression: as a significant prognostic indicator for patients with colorectal cancer. Mod Pathol 20(3):375–383

    Article  PubMed  CAS  Google Scholar 

  113. Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J et al (1997) A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186(11):1809–1818

    Article  PubMed  CAS  Google Scholar 

  114. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED (1997) The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA 94(10):5249–5254

    Article  PubMed  CAS  Google Scholar 

  115. Cantoni C, Verdiani S, Falco M, Pessino A, Cilli M, Conte R et al (1988) p49, a putative HLA class I-specific inhibitory NK receptor belonging to the immunoglobulin superfamily. Eur J Immunol 28(6):1980–1990

    Article  Google Scholar 

  116. Bainbridge DR, Ellis SA, Sargent IL (2000) HLA-G suppresses proliferation of CD4(+) T-lymphocytes. J Reprod Immunol 48(1):17–26

    Article  PubMed  CAS  Google Scholar 

  117. Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S et al (2003) Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33(1):125–134

    Article  PubMed  CAS  Google Scholar 

  118. Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A et al (2000) Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164(12):6100–6104

    PubMed  CAS  Google Scholar 

  119. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  120. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5):1634–1642

    PubMed  CAS  Google Scholar 

  121. Yang AS, Lattime EC (2003) Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63(9):2150–2157

    PubMed  CAS  Google Scholar 

  122. Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S et al (1997) Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 71(4):630–637

    Article  PubMed  CAS  Google Scholar 

  123. Pechhold K, Wesch D, Schondelmaier S, Kabelitz D (1994) Primary activation of V gamma 9-expressing gamma delta T cells by Mycobacterium tuberculosis Requirement for Th1-type CD4 T cell help and inhibition by IL-10. J Immunol 152(10):4984–4992

    PubMed  CAS  Google Scholar 

  124. Marx S, Wesch D, Kabelitz D (1997) Activation of human gamma delta T cells by Mycobacterium tuberculosis and Daudi lymphoma cells: differential regulatory effect of IL-10 and IL-12. J Immunol 158(6):2842–2848

    PubMed  CAS  Google Scholar 

  125. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC et al (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263(5154):1759–1762

    Article  PubMed  CAS  Google Scholar 

  126. Midis GP, Shen Y, Owen-Schaub LB (1996) Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res 56(17):3870–3874

    PubMed  CAS  Google Scholar 

  127. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D et al (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nat Med 2(12):1361–1366

    Article  PubMed  CAS  Google Scholar 

  128. Giovarelli M, Musiani P, Garotta G, Ebner R, Di Carlo E, Kim Y et al (1999) A “stealth effect”: adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. J Immunol 163(9):4886–4893

    PubMed  CAS  Google Scholar 

  129. Ferrarini M, Heltai S, Toninelli E, Sabbadini MG, Pellicciari C, Manfredi AA (1995) Daudi lymphoma killing triggers the programmed death of cytotoxic V gamma 9/V delta 2 T lymphocytes. J Immunol 154(8):3704–3712

    PubMed  CAS  Google Scholar 

  130. Gan YH, Lui SS, Malkovsky M (2001) Differential susceptibility of naive and activated human gammadelta T cells to activation-induced cell death by T-cell receptor cross-linking. Mol Med 7(9):636–643

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in J.J.F.’s laboratory is funded by institutional grants from INSERM, University of Toulouse 3 and by contracts from the Association pour la Recherche sur le Cancer (contract TUMOSTRESS), la Ligue Régionale Contre le Cancer and the Institut National du Cancer (projects V9V2TER and RITUXOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Fournié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capietto, AH., Martinet, L. & Fournié, JJ. How tumors might withstand γδ T-cell attack. Cell. Mol. Life Sci. 68, 2433–2442 (2011). https://doi.org/10.1007/s00018-011-0705-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0705-7

Keywords

Navigation