Skip to main content

Advertisement

Log in

Thyroid hormone actions in liver cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The thyroid hormone 3,3,5-triiodo-l-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang YH, Tsai MM, Lin KH (2008) Thyroid hormone-dependent regulation of target genes and their physiological significance. Chang Gung Med J 31(4):325–334. pii:3104/310401

    Google Scholar 

  2. Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R (1990) Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am J Physiol 258(4 Pt 1):E715–E726

    PubMed  CAS  Google Scholar 

  3. Malik R, Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM 95(9):559–569

    PubMed  CAS  Google Scholar 

  4. Dayan CM, Panicker V (2009) Novel insights into thyroid hormones from the study of common genetic variation. Nat Rev Endocrinol 5(4):211–218. doi:10.1038/nrendo.2009.19

    PubMed  CAS  Google Scholar 

  5. Oppenheimer JH, Schwartz HL, Surks MI (1975) Nuclear binding capacity appears to limit the hepatic response to L-triiodothyronine (T3). Endocr Res Commun 2(4–5):309–325

    PubMed  CAS  Google Scholar 

  6. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142

    PubMed  CAS  Google Scholar 

  7. Pascual A, Aranda A (2012) Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. doi:10.1016/j.bbagen.2012.03.012

  8. Cheng SY (2000) Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1(1–2):9–18

    PubMed  CAS  Google Scholar 

  9. Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170. doi:10.1210/er.2009-0007

    PubMed  CAS  Google Scholar 

  10. Williams GR (2000) Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20(22):8329–8342

    PubMed  CAS  Google Scholar 

  11. Shahrara S, Drvota V, Sylven C (1999) Organ-specific expression of thyroid hormone receptor mRNA and protein in different human tissues. Biol Pharm Bull 22(10):1027–1033

    PubMed  CAS  Google Scholar 

  12. Sakurai A, Nakai A, DeGroot LJ (1989) Expression of three forms of thyroid hormone receptor in human tissues. Mol Endocrinol 3(2):392–399

    PubMed  CAS  Google Scholar 

  13. Nakai A, Seino S, Sakurai A, Szilak I, Bell GI, DeGroot LJ (1988) Characterization of a thyroid hormone receptor expressed in human kidney and other tissues. Proc Natl Acad Sci USA 85(8):2781–2785

    PubMed  CAS  Google Scholar 

  14. Yen PM, Sunday ME, Darling DS, Chin WW (1992) Isoform-specific thyroid hormone receptor antibodies detect multiple thyroid hormone receptors in rat and human pituitaries. Endocrinology 130(3):1539–1546

    PubMed  CAS  Google Scholar 

  15. Tagami T, Yamamoto H, Moriyama K, Sawai K, Usui T, Shimatsu A, Naruse M (2010) Identification of a novel human thyroid hormone receptor beta isoform as a transcriptional modulator. Biochem Biophys Res Commun 396(4):983–988. doi:10.1016/j.bbrc.2010.05.038

    Google Scholar 

  16. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81(3):1269–1304

    PubMed  CAS  Google Scholar 

  17. Larsen PR (2009) Thyroid hormone analogs and metabolites: new applications for an old hormone? Nat Clin Pract Endocrinol Metab 5(1):1. doi:10.1038/ncpendmet1025

    PubMed  Google Scholar 

  18. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355(6359):446–449. doi:10.1038/355446a0

    PubMed  CAS  Google Scholar 

  19. Lee IJ, Driggers PH, Medin JA, Nikodem VM, Ozato K (1994) Recombinant thyroid hormone receptor and retinoid X receptor stimulate ligand-dependent transcription in vitro. Proc Natl Acad Sci USA 91(5):1647–1651

    PubMed  CAS  Google Scholar 

  20. Yoon HG, Chan DW, Huang ZQ, Li J, Fondell JD, Qin J, Wong J (2003) Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J 22(6):1336–1346. doi:10.1093/emboj/cdg120

    PubMed  CAS  Google Scholar 

  21. Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102(6):753–763. pii:S0092-8674(00)00064-7

    Google Scholar 

  22. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108 (4):465-474. pii:S0092867402006414

    Google Scholar 

  23. Fondell JD, Ge H, Roeder RG (1996) Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci USA 93(16):8329–8333

    PubMed  CAS  Google Scholar 

  24. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    PubMed  CAS  Google Scholar 

  25. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14(2):184–193

    PubMed  CAS  Google Scholar 

  26. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437. pii:S0092-8674(00)81883-8

    Google Scholar 

  27. Moeller LC, Cao X, Dumitrescu AM, Seo H, Refetoff S (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020. doi:10.1621/nrs.04020

    PubMed  Google Scholar 

  28. Lei J, Mariash CN, Ingbar DH (2004) 3,3′,5-Triiodo-l-thyronine up-regulation of Na, K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J Biol Chem 279(46):47589–47600. doi:10.1074/jbc.M405497200

    PubMed  CAS  Google Scholar 

  29. Storey NM, Gentile S, Ullah H, Russo A, Muessel M, Erxleben C, Armstrong DL (2006) Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci USA 103(13):5197–5201. doi:10.1073/pnas.0600089103

    PubMed  CAS  Google Scholar 

  30. Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ (2009) L-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296(5):C980–C991. doi:10.1152/ajpcell.00305.2008

    Google Scholar 

  31. Davis FB, Tang HY, Shih A, Keating T, Lansing L, Hercbergs A, Fenstermaker RA, Mousa A, Mousa SA, Davis PJ, Lin HY (2006) Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 66(14):7270–7275. doi:10.1158/0008-5472.CAN-05-4365

    PubMed  CAS  Google Scholar 

  32. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146(7):2864–2871. doi:10.1210/en.2005-0102

    PubMed  CAS  Google Scholar 

  33. Arnaout MA, Goodman SL, Xiong JP (2002) Coming to grips with integrin binding to ligands. Curr Opin Cell Biol 14(5):641–651. pii:S095506740200371X

    Google Scholar 

  34. Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB (2000) Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275(48):38032–38039. doi:10.1074/jbc.M002560200

    PubMed  CAS  Google Scholar 

  35. Cao HJ, Lin HY, Luidens MK, Davis FB, Davis PJ (2009) Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-beta1 (Trbeta1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr Res 34(1–2):31–42. doi:10.1080/07435800902911810

    PubMed  Google Scholar 

  36. Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145(7):3265–3272. doi:10.1210/en.2004-0308

    PubMed  CAS  Google Scholar 

  37. Baumann CT, Maruvada P, Hager GL, Yen PM (2001) Nuclear cytoplasmic shuttling by thyroid hormone receptors. multiple protein interactions are required for nuclear retention. J Biol Chem 276(14):11237–11245. doi:10.1074/jbc.M011112200

    Google Scholar 

  38. Lin HY, Shih A, Davis FB, Davis PJ (1999) Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochem J 338(Pt 2):427–432

    PubMed  CAS  Google Scholar 

  39. Chen Y, Chen PL, Chen CF, Sharp ZD, Lee WH (1999) Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc Natl Acad Sci USA 96(8):4443–4448

    PubMed  CAS  Google Scholar 

  40. Vasudevan N, Ogawa S, Pfaff D (2002) Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 82(4):923–944. doi:10.1152/physrev.00014.2002

    PubMed  CAS  Google Scholar 

  41. Chen SL, Chang YJ, Wu YH, Lin KH (2003) Mitogen-activated protein kinases potentiate thyroid hormone receptor transcriptional activity by stabilizing its protein. Endocrinology 144(4):1407–1419

    PubMed  CAS  Google Scholar 

  42. D’Arezzo S, Incerpi S, Davis FB, Acconcia F, Marino M, Farias RN, Davis PJ (2004) Rapid nongenomic effects of 3,5,3′-triiodo-l-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145(12):5694–5703. doi:10.1210/en.2004-0890

    PubMed  Google Scholar 

  43. Cao X, Kambe F, Moeller LC, Refetoff S, Seo H (2005) Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6 K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 19(1):102–112. doi:10.1210/me.2004-0093

    PubMed  CAS  Google Scholar 

  44. Moeller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19(12):2955–2963. doi:10.1210/me.2004-0542

    PubMed  CAS  Google Scholar 

  45. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736):597–601. doi:10.1038/21218

    PubMed  CAS  Google Scholar 

  46. Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, Noma K, Ueki K, Nguyen NH, Scanlan TS, Moskowitz MA, Cheng SY, Liao JK (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA 103(38):14104–14109. doi:10.1073/pnas.0601600103y

    PubMed  CAS  Google Scholar 

  47. Lei J, Mariash CN, Bhargava M, Wattenberg EV, Ingbar DH (2008) T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 294(4):L749–L754. doi:10.1152/ajplung.00335.2007

    PubMed  CAS  Google Scholar 

  48. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL (1990) Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem 265(9):5296–5302

    PubMed  CAS  Google Scholar 

  49. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29(2):211–218. doi:10.1016/j.yfrne.2007.09.003

    PubMed  CAS  Google Scholar 

  50. Hashimoto K, Mori M (2011) Crosstalk of thyroid hormone receptor and liver X receptor in lipid metabolism and beyond [Review]. Endocr J 58(11):921–930. pii:JST.JSTAGE/endocrj/EJ11-0114

    Google Scholar 

  51. Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12(3):181–195. doi:10.1038/nrc3214

    PubMed  CAS  Google Scholar 

  52. Lu C, Cheng SY (2010) Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol 44(3):143–154. doi:10.1677/JME-09-0107

    PubMed  CAS  Google Scholar 

  53. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    PubMed  CAS  Google Scholar 

  54. Miyamoto T, Kaneko A, Kakizawa T, Yajima H, Kamijo K, Sekine R, Hiramatsu K, Nishii Y, Hashimoto T, Hashizume K (1997) Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J Biol Chem 272(12):7752–7758

    PubMed  CAS  Google Scholar 

  55. Bogazzi F, Hudson LD, Nikodem VM (1994) A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem 269(16):11683–11686

    PubMed  CAS  Google Scholar 

  56. Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY (2003) Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Res 63(17):5274–5280

    PubMed  CAS  Google Scholar 

  57. Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD (1991) Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest 88(6):2123–2130. doi:10.1172/JCI115542

    PubMed  CAS  Google Scholar 

  58. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S (2000) Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97(24):13209–13214. doi:10.1073/pnas.230285997

    PubMed  CAS  Google Scholar 

  59. Kato Y, Ying H, Zhao L, Furuya F, Araki O, Willingham MC, Cheng SY (2006) PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene 25(19):2736–2747. doi:10.1038/sj.onc.1209299

    PubMed  CAS  Google Scholar 

  60. Gottardi CJ, Gumbiner BM (2001) Adhesion signaling: how beta-catenin interacts with its partners. Curr Biol 11(19):R792–R794. pii:S0960-9822(01)00473-0

    Google Scholar 

  61. White BD, Chien AJ, Dawson DW (2012) Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142(2):219–232. doi:10.1053/j.gastro.2011.12.001

    PubMed  CAS  Google Scholar 

  62. Suzuki H, Willingham MC, Cheng SY (2002) Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12(11):963–969. doi:10.1089/105072502320908295

    PubMed  CAS  Google Scholar 

  63. Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY (2008) Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor. Mol Cell Biol 28(14):4598–4608. doi:10.1128/MCB.02192-07

    PubMed  CAS  Google Scholar 

  64. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. doi:10.1038/nrc3090

    PubMed  CAS  Google Scholar 

  65. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10(1):59–64. doi:10.1038/nrc2771

    PubMed  CAS  Google Scholar 

  66. Lin HM, Zhao L, Cheng SY (2002) Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors. J Biol Chem 277(32):28733–28741. doi:10.1074/jbc.M203380200

    PubMed  CAS  Google Scholar 

  67. Zhu XG, Park KS, Kaneshige M, Bhat MK, Zhu Q, Mariash CN, McPhie P, Cheng SY (2000) The orphan nuclear receptor Ear-2 is a negative coregulator for thyroid hormone nuclear receptor function. Mol Cell Biol 20(7):2604–2618

    PubMed  CAS  Google Scholar 

  68. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270(5240):1354–1357

    PubMed  CAS  Google Scholar 

  69. McGough AM, Staiger CJ, Min JK, Simonetti KD (2003) The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett 552(2–3):75–81. pii:S0014579303009323

    Google Scholar 

  70. Kwiatkowski DJ (1999) Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol 11(1):103–108. pii:S0955-0674(99)80012-X

    Google Scholar 

  71. De Corte V, Bruyneel E, Boucherie C, Mareel M, Vandekerckhove J, Gettemans J (2002) Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J 21(24):6781–6790

    PubMed  Google Scholar 

  72. Kim CS, Furuya F, Ying H, Kato Y, Hanover JA, Cheng SY (2007) Gelsolin: a novel thyroid hormone receptor-beta interacting protein that modulates tumor progression in a mouse model of follicular thyroid cancer. Endocrinology 148(3):1306–1312. doi:10.1210/en.2006-0923

    PubMed  CAS  Google Scholar 

  73. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. doi:10.1038/nrm2395

    PubMed  CAS  Google Scholar 

  74. Yap N, Yu CL, Cheng SY (1996) Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Proc Natl Acad Sci USA 93(9):4273–4277

    PubMed  CAS  Google Scholar 

  75. Qi JS, Desai-Yajnik V, Yuan Y, Samuels HH (1997) Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol Cell Biol 17(12):7195–7207

    PubMed  CAS  Google Scholar 

  76. Barrera-Hernandez G, Zhan Q, Wong R, Cheng SY (1998) Thyroid hormone receptor is a negative regulator in p53-mediated signaling pathways. DNA Cell Biol 17(9):743–750

    PubMed  CAS  Google Scholar 

  77. Vlotides G, Eigler T, Melmed S (2007) Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 28(2):165–186. doi:10.1210/er.2006-0042

    PubMed  CAS  Google Scholar 

  78. Kim D, Pemberton H, Stratford AL, Buelaert K, Watkinson JC, Lopes V, Franklyn JA, McCabe CJ (2005) Pituitary tumour transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene 24(30):4861–4866. doi:10.1038/sj.onc.1208659

    PubMed  CAS  Google Scholar 

  79. Ying H, Furuya F, Zhao L, Araki O, West BL, Hanover JA, Willingham MC, Cheng SY (2006) Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Invest 116(11):2972–2984. doi:10.1172/JCI28598

    PubMed  CAS  Google Scholar 

  80. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. doi:10.1038/324635a0

    PubMed  CAS  Google Scholar 

  81. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1986) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.1038/324641a0

    PubMed  CAS  Google Scholar 

  82. Usala SJ, Bale AE, Gesundheit N, Weinberger C, Lash RW, Wondisford FE, McBride OW, Weintraub BD (1988) Tight linkage between the syndrome of generalized thyroid hormone resistance and the human c-erbA beta gene. Mol Endocrinol 2(12):1217–1220

    PubMed  CAS  Google Scholar 

  83. Sakurai A, Takeda K, Ain K, Ceccarelli P, Nakai A, Seino S, Bell GI, Refetoff S, DeGroot LJ (1989) Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor beta. Proc Natl Acad Sci USA 86(22):8977–8981

    PubMed  CAS  Google Scholar 

  84. Refetoff S, Dumitrescu AM (2007) Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21(2):277–305. doi:10.1016/j.beem.2007.03.005

    PubMed  CAS  Google Scholar 

  85. Weiss RE, Refetoff S (2000) Resistance to thyroid hormone. Rev Endocr Metab Disord 1(1–2):97–108

    PubMed  CAS  Google Scholar 

  86. Yen PM (2003) Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14(7):327–333. pii:S1043276003001140

    Google Scholar 

  87. Ono S, Schwartz ID, Mueller OT, Root AW, Usala SJ, Bercu BB (1991) Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J Clin Endocrinol Metab 73(5):990–994

    PubMed  CAS  Google Scholar 

  88. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK, Cohen RN, Wondisford FE (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 98(7):3998–4003. doi:10.1073/pnas.051454698

    PubMed  CAS  Google Scholar 

  89. Kamiya Y, Zhang XY, Ying H, Kato Y, Willingham MC, Xu J, O’Malley BW, Cheng SY (2003) Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology 144(9):4144–4153

    PubMed  CAS  Google Scholar 

  90. Siesser WB, Cheng SY, McDonald MP (2005) Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology 181(4):653–663. doi:10.1007/s00213-005-0024-5

    PubMed  CAS  Google Scholar 

  91. Griffith AJ, Szymko YM, Kaneshige M, Quinonez RE, Kaneshige K, Heintz KA, Mastroianni MA, Kelley MW, Cheng SY (2002) Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. J Assoc Res Otolaryngol 3(3):279–288. doi:10.1007/s101620010092

    PubMed  Google Scholar 

  92. O’Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR (2003) A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17(7):1410–1424. doi:10.1210/me.2002-0296

    PubMed  Google Scholar 

  93. Cheng SY (2005) Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab 16(4):176–182. doi:10.1016/j.tem.2005.03.008

    PubMed  CAS  Google Scholar 

  94. Kaneshige M, Suzuki H, Kaneshige K, Cheng J, Wimbrow H, Barlow C, Willingham MC, Cheng S (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98(26):15095–15100. doi:10.1073/pnas.261565798

    PubMed  CAS  Google Scholar 

  95. Tinnikov A, Nordstrom K, Thoren P, Kindblom JM, Malin S, Rozell B, Adams M, Rajanayagam O, Pettersson S, Ohlsson C, Chatterjee K, Vennstrom B (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21(19):5079–5087

    PubMed  CAS  Google Scholar 

  96. Liu YY, Schultz JJ, Brent GA (2003) A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278(40):38913–38920. doi:10.1074/jbc.M306120200

    PubMed  CAS  Google Scholar 

  97. Thormeyer D, Baniahmad A (1999) The v-erbA oncogene (review). Int J Mol Med 4(4):351–358

    PubMed  CAS  Google Scholar 

  98. Yen PM, Ikeda M, Brubaker JH, Forgione M, Sugawara A, Chin WW (1994) Roles of v-erbA homodimers and heterodimers in mediating dominant negative activity by v-erbA. J Biol Chem 269(2):903–909

    PubMed  CAS  Google Scholar 

  99. Chen LC, Matsumura K, Deng G, Kurisu W, Ljung BM, Lerman MI, Waldman FM, Smith HS (1994) Deletion of two separate regions on chromosome 3p in breast cancers. Cancer Res 54(11):3021–3024

    PubMed  CAS  Google Scholar 

  100. Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC, Gray JW, Dairkee SH (2002) Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res 62(7):1939–1943

    PubMed  CAS  Google Scholar 

  101. Silva JM, Dominguez G, Gonzalez-Sancho JM, Garcia JM, Silva J, Garcia-Andrade C, Navarro A, Munoz A, Bonilla F (2002) Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 21(27):4307–4316. doi:10.1038/sj.onc.1205534

    PubMed  CAS  Google Scholar 

  102. Markowitz S, Haut M, Stellato T, Gerbic C, Molkentin K (1989) Expression of the ErbA-beta class of thyroid hormone receptors is selectively lost in human colon carcinoma. J Clin Invest 84(5):1683–1687. doi:10.1172/JCI114349

    PubMed  CAS  Google Scholar 

  103. Horkko TT, Tuppurainen K, George SM, Jernvall P, Karttunen TJ, Makinen MJ (2006) Thyroid hormone receptor beta1 in normal colon and colorectal cancer-association with differentiation, polypoid growth type and K-ras mutations. Int J Cancer 118(7):1653–1659. doi:10.1002/ijc.21556

    PubMed  CAS  Google Scholar 

  104. Lin KH, Shieh HY, Chen SL, Hsu HC (1999) Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 26(1):53–61. doi:10.1002/(SICI)1098-2744(199909)26:1<53:AID-MC7>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  105. Lin KH, Wu YH, Chen SL (2001) Impaired interaction of mutant thyroid hormone receptors associated with human hepatocellular carcinoma with transcriptional coregulators. Endocrinology 142(2):653–662

    PubMed  CAS  Google Scholar 

  106. Chan IH, Privalsky ML (2006) Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 25(25):3576–3588. doi:10.1038/sj.onc.1209389

    PubMed  CAS  Google Scholar 

  107. Huber-Gieseke T, Pernin A, Huber O, Burger AG, Meier CA (1997) Lack of loss of heterozygosity at the c-erbA beta locus in gastrointestinal tumors. Oncology 54(3):214–219

    PubMed  CAS  Google Scholar 

  108. Wang CS, Lin KH, Hsu YC (2002) Alterations of thyroid hormone receptor alpha gene: frequency and association with Nm23 protein expression and metastasis in gastric cancer. Cancer Lett 175(2):121–127. pii:S0304383501007224

    Google Scholar 

  109. Drabkin H, Kao FT, Hartz J, Hart I, Gazdar A, Weinberger C, Evans R, Gerber M (1988) Localization of human ERBA2 to the 3p22—3p24.1 region of chromosome 3 and variable deletion in small cell lung cancer. Proc Natl Acad Sci USA 85(23):9258–9262

    PubMed  CAS  Google Scholar 

  110. Dobrovic A, Houle B, Belouchi A, Bradley WE (1988) erbA-related sequence coding for DNA-binding hormone receptor localized to chromosome 3p21-3p25 and deleted in small cell lung carcinoma. Cancer Res 48(3):682–685

    PubMed  CAS  Google Scholar 

  111. Leduc F, Brauch H, Hajj C, Dobrovic A, Kaye F, Gazdar A, Harbour JW, Pettengill OS, Sorenson GD, van den Berg A et al (1989) Loss of heterozygosity in a gene coding for a thyroid hormone receptor in lung cancers. Am J Hum Genet 44(2):282–287

    PubMed  CAS  Google Scholar 

  112. Sisley K, Curtis D, Rennie IG, Rees RC (1993) Loss of heterozygosity of the thyroid hormone receptor B in posterior uveal melanoma. Melanoma Res 3(6):457–461

    PubMed  CAS  Google Scholar 

  113. Lee JW, Chen CL, Juang BT, Chen JY, Yang CS, Doong SL (2000) Elevated expression of thyroid hormone receptor alpha 2 (c-erb A- alpha 2) in nasopharyngeal carcinoma. Br J Cancer 83(12):1674–1680. doi:10.1054/bjoc.2000.1505

    PubMed  CAS  Google Scholar 

  114. McCabe CJ, Gittoes NJ, Sheppard MC, Franklyn JA (1999) Thyroid receptor alpha1 and alpha2 mutations in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 84(2):649–653

    PubMed  CAS  Google Scholar 

  115. Ando S, Sarlis NJ, Oldfield EH, Yen PM (2001) Somatic mutation of TRbeta can cause a defect in negative regulation of TSH in a TSH-secreting pituitary tumor. J Clin Endocrinol Metab 86(11):5572–5576

    PubMed  CAS  Google Scholar 

  116. Ando S, Sarlis NJ, Krishnan J, Feng X, Refetoff S, Zhang MQ, Oldfield EH, Yen PM (2001) Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 15(9):1529–1538

    PubMed  CAS  Google Scholar 

  117. Kamiya Y, Puzianowska-Kuznicka M, McPhie P, Nauman J, Cheng SY, Nauman A (2002) Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis 23(1):25–33

    PubMed  CAS  Google Scholar 

  118. Rosen MD, Privalsky ML (2009) Thyroid hormone receptor mutations found in renal clear cell carcinomas alter corepressor release and reveal helix 12 as key determinant of corepressor specificity. Mol Endocrinol 23(8):1183–1192. doi:10.1210/me.2009-0126

    PubMed  CAS  Google Scholar 

  119. Bronnegard M, Torring O, Boos J, Sylven C, Marcus C, Wallin G (1994) Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue. J Clin Endocrinol Metab 79(2):384–389

    PubMed  CAS  Google Scholar 

  120. Onda M, Li D, Suzuki S, Nakamura I, Takenoshita S, Brogren CH, Stampanoni S, Rampino N (2002) Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer. Clin Cancer Res 8(9):2870–2874

    PubMed  CAS  Google Scholar 

  121. Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J (2002) Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 87(3):1120–1128

    PubMed  CAS  Google Scholar 

  122. Zhu XG, Zhao L, Willingham MC, Cheng SY (2010) Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma. Oncogene 29(13):1909–1919. doi:10.1038/onc.2009.476

    PubMed  CAS  Google Scholar 

  123. Guigon C, Kim D, Willingham M, Cheng S-y (2011) Mutation of thyroid hormone receptor-b in mice predisposes to the development of mammary tumors. Oncogene. doi:10.1038/onc.2011.50

    PubMed  Google Scholar 

  124. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    PubMed  Google Scholar 

  125. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576. doi:10.1053/j.gastro.2007.04.061

    PubMed  CAS  Google Scholar 

  126. Chamba A, Neuberger J, Strain A, Hopkins J, Sheppard MC, Franklyn JA (1996) Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J Clin Endocrinol Metab 81(1):360–367

    PubMed  CAS  Google Scholar 

  127. Hassan MM, Kaseb A, Li D, Patt YZ, Vauthey JN, Thomas MB, Curley SA, Spitz MR, Sherman SI, Abdalla EK, Davila M, Lozano RD, Hassan DM, Chan W, Brown TD, Abbruzzese JL (2009) Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology 49(5):1563–1570. doi:10.1002/hep.22793

    PubMed  Google Scholar 

  128. Abbass SA, Asa SL, Ezzat S (1997) Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 82(4):1160–1166

    PubMed  CAS  Google Scholar 

  129. Lin K, Chen S, Zhu XG, Shieh H, McPhie P, Cheng S (1997) The gene regulating activity of thyroid hormone nuclear receptors is modulated by cell-type-specific factors. Biochem Biophys Res Commun 238(2):280–284

    PubMed  CAS  Google Scholar 

  130. Yen CC, Huang YH, Liao CY, Liao CJ, Cheng WL, Chen WJ, Lin KH (2006) Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-beta. J Mol Endocrinol 36(1):9–21. doi:10.1677/jme.1.01911

    PubMed  CAS  Google Scholar 

  131. Chen RN, Huang YH, Yeh CT, Liao CH, Lin KH (2008) Thyroid hormone receptors suppress pituitary tumor transforming gene 1 activity in hepatoma. Cancer Res 68(6):1697–1706. doi:10.1158/0008-5472.CAN-07-5492

    PubMed  CAS  Google Scholar 

  132. Wu SM, Huang YH, Lu YH, Chien LF, Yeh CT, Tsai MM, Liao CH, Chen WJ, Liao CJ, Cheng WL, Lin KH (2010) Thyroid hormone receptor-mediated regulation of the methionine adenosyltransferase 1 gene is associated with cell invasion in hepatoma cell lines. Cell Mol Life Sci 67(11):1831–1843. doi:10.1007/s00018-010-0281-2

    PubMed  CAS  Google Scholar 

  133. Liao CS, Tai PJ, Huang YH, Chen RN, Wu SM, Kuo LW, Yeh CT, Tsai MM, Chen WJ, Lin KH (2009) Regulation of AKR1B1 by thyroid hormone and its receptors. Mol Cell Endocrinol 307(1–2):109–117. doi:10.1016/j.mce.2009.04.013

    PubMed  CAS  Google Scholar 

  134. Liao CH, Yeh SC, Huang YH, Chen RN, Tsai MM, Chen WJ, Chi HC, Tai PJ, Liao CJ, Wu SM, Cheng WL, Pai LM, Lin KH Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion. Endocr Relat Cancer 17(1):99–111. doi:10.1677/ERC-09-0050

  135. Liao CH, Yeh SC, Huang YH, Chen RN, Tsai MM, Chen WJ, Chi HC, Tai PJ, Liao CJ, Wu SM, Cheng WL, Pai LM, Lin KH (2010) Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion. Endocr Relat Cancer 17(1):99–111. doi:10.1677/ERC-09-0050

    PubMed  CAS  Google Scholar 

  136. Liao CH, Yeh CT, Huang YH, Wu SM, Chi HC, Tsai MM, Tsai CY, Liao CJ, Tseng YH, Lin YH, Chen CY, Chung IH, Cheng WL, Chen WJ, Lin KH (2012) Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells. Hepatology. doi:10.1002/hep.24740

    Google Scholar 

  137. Aranda A, Martinez-Iglesias O, Ruiz-Llorente L, Garcia-Carpizo V, Zambrano A (2009) Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20(7):318–324. doi:10.1016/j.tem.2009.03.011

    PubMed  CAS  Google Scholar 

  138. Garcia-Silva S, Martinez-Iglesias O, Ruiz-Llorente L, Aranda A (2011) Thyroid hormone receptor beta1 domains responsible for the antagonism with the ras oncogene: role of corepressors. Oncogene 30(7):854–864. doi:10.1038/onc.2010.464

    PubMed  CAS  Google Scholar 

  139. Perra A, Kowalik MA, Pibiri M, Ledda-Columbano GM, Columbano A (2009) Thyroid hormone receptor ligands induce regression of rat preneoplastic liver lesions causing their reversion to a differentiated phenotype. Hepatology 49(4):1287–1296. doi:10.1002/hep.22750

    PubMed  CAS  Google Scholar 

  140. Ledda-Columbano GM, Perra A, Concas D, Cossu C, Molotzu F, Sartori C, Shinozuka H, Columbano A (2003) Different effects of the liver mitogens triiodo-thyronine and ciprofibrate on the development of rat hepatocellular carcinoma. Toxicol Pathol 31(1):113–120

    PubMed  CAS  Google Scholar 

  141. Ledda-Columbano GM, Perra A, Loi R, Shinozuka H, Columbano A (2000) Cell proliferation induced by triiodothyronine in rat liver is associated with nodule regression and reduction of hepatocellular carcinomas. Cancer Res 60(3):603–609

    PubMed  CAS  Google Scholar 

  142. Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F, Paramio JM, Vennstrom B, Aranda A (2009) Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 69(2):501–509

    PubMed  CAS  Google Scholar 

  143. Chan IH, Privalsky ML (2009) Thyroid hormone receptor mutants implicated in human hepatocellular carcinoma display an altered target gene repertoire. Oncogene 28(47):4162–4174. doi:10.1038/onc.2009.265

    PubMed  CAS  Google Scholar 

  144. Hercbergs AA, Goyal LK, Suh JH, Lee S, Reddy CA, Cohen BH, Stevens GH, Reddy SK, Peereboom DM, Elson PJ, Gupta MK, Barnett GH (2003) Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a phase I/II study. Anticancer Res 23(1B):617–626

    Google Scholar 

  145. Cristofanilli M, Yamamura Y, Kau SW, Bevers T, Strom S, Patangan M, Hsu L, Krishnamurthy S, Theriault RL, Hortobagyi GN (2005) Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer 103(6):1122–1128. doi:10.1002/cncr.20881

    PubMed  CAS  Google Scholar 

  146. Roti E, Minelli R, Salvi M (2000) Thyroid hormone metabolism in obesity. Int J Obes Relat Metab Disord 24(Suppl 2):S113–S115

    PubMed  CAS  Google Scholar 

  147. Pucci E, Chiovato L, Pinchera A (2000) Thyroid and lipid metabolism. Int J Obes Relat Metab Disord 24(Suppl 2):S109–S112

    PubMed  CAS  Google Scholar 

  148. Dimitriadis G, Parry-Billings M, Bevan S, Leighton B, Krause U, Piva T, Tegos K, Challiss RA, Wegener G, Newsholme EA (1997) The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats. Eur J Clin Invest 27(6):475–483

    PubMed  CAS  Google Scholar 

  149. Das K, Chainy GB (2001) Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta 1537(1):1–13. pii:S0925-4439(01)00048-5

    Google Scholar 

  150. McCord JM (1993) Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem 26(5):351–357. pii:0009-9120(93)90111-I

    Google Scholar 

  151. Venditti P, De Rosa R, Di Meo S (2003) Effect of thyroid state on H2O2 production by rat liver mitochondria. Mol Cell Endocrinol 205(1–2):185–192. pii:S0303720702003325

    Google Scholar 

  152. Grattagliano I, Lauterburg BH, Portincasa P, Caruso ML, Vendemiale G, Valentini AM, Palmieri VO, Palasciano G (2003) Mitochondrial glutathione content determines the rate of liver regeneration after partial hepatectomy in eu- and hypothyroid rats. J Hepatol 39(4):571–579. pii:S0168827803003179

    Google Scholar 

  153. Bayraktar M, Van Thiel DH (1997) Abnormalities in measures of liver function and injury in thyroid disorders. Hepatogastroenterology 44(18):1614–1618

    PubMed  CAS  Google Scholar 

  154. Upadhyay G, Singh R, Kumar A, Kumar S, Kapoor A, Godbole MM (2004) Severe hyperthyroidism induces mitochondria-mediated apoptosis in rat liver. Hepatology 39(4):1120–1130. doi:10.1002/hep.20085

    PubMed  Google Scholar 

  155. Inoue T, Tanigawa K, Furuya H, Nakano A, Notsu K, Note S, Kato Y, Nagaoka S (1988) A case of thyroid crisis complicated with acute hepatic failure. Nippon Naika Gakkai Zasshi 77(4):564–567

    PubMed  CAS  Google Scholar 

  156. Bhattacharyya A, Wiles PG (1997) Thyrotoxic crisis presenting as acute abdomen. J R Soc Med 90(12):681–682

    PubMed  CAS  Google Scholar 

  157. Barlow C, Meister B, Lardelli M, Lendahl U, Vennstrom B (1994) Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EMBO J 13(18):4241–4250

    PubMed  CAS  Google Scholar 

  158. Columbano A, Pibiri M, Deidda M, Cossu C, Scanlan TS, Chiellini G, Muntoni S, Ledda-Columbano GM (2006) The thyroid hormone receptor-beta agonist GC-1 induces cell proliferation in rat liver and pancreas. Endocrinology 147(7):3211–3218. doi:10.1210/en.2005-1561

    PubMed  CAS  Google Scholar 

  159. Columbano A, Simbula M, Pibiri M, Perra A, Deidda M, Locker J, Pisanu A, Uccheddu A, Ledda-Columbano GM (2008) Triiodothyronine stimulates hepatocyte proliferation in two models of impaired liver regeneration. Cell Prolif 41(3):521–531. doi:10.1111/j.1365-2184.2008.00532.x

    PubMed  CAS  Google Scholar 

  160. Liangpunsakul S, Chalasani N (2003) Is hypothyroidism a risk factor for non-alcoholic steatohepatitis? J Clin Gastroenterol 37(4):340–343

    PubMed  Google Scholar 

  161. Reddy A, Dash C, Leerapun A, Mettler TA, Stadheim LM, Lazaridis KN, Roberts RO, Roberts LR (2007) Hypothyroidism: a possible risk factor for liver cancer in patients with no known underlying cause of liver disease. Clin Gastroenterol Hepatol 5(1):118–123. doi:10.1016/j.cgh.2006.07.011

    PubMed  Google Scholar 

  162. Martinez-Iglesias O, Garcia-Silva S, Regadera J, Aranda A (2009) Hypothyroidism enhances tumor invasiveness and metastasis development. PLoS ONE 4(7):e6428. doi:10.1371/journal.pone.0006428

    PubMed  Google Scholar 

  163. Barrera-Hernandez G, Park KS, Dace A, Zhan Q, Cheng SY (1999) Thyroid hormone-induced cell proliferation in GC cells is mediated by changes in G1 cyclin/cyclin-dependent kinase levels and activity. Endocrinology 140(11):5267–5274

    PubMed  CAS  Google Scholar 

  164. Hall LC, Salazar EP, Kane SR, Liu N (2008) Effects of thyroid hormones on human breast cancer cell proliferation. J Steroid Biochem Mol Biol 109(1–2):57–66. doi:10.1016/j.jsbmb.2007.12.008

    PubMed  CAS  Google Scholar 

  165. Tsui KH, Hsieh WC, Lin MH, Chang PL, Juang HH (2008) Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-cell translocation gene 2. Prostate 68(6):610–619. doi:10.1002/pros.20725

    PubMed  CAS  Google Scholar 

  166. Smyth PP (1997) The thyroid and breast cancer: a significant association? Ann Med 29(3):189–191

    PubMed  CAS  Google Scholar 

  167. Rose DP, Davis TE (1981) Plasma thyronine levels in carcinoma of the breast and colon. Arch Intern Med 141(9):1161–1164

    PubMed  CAS  Google Scholar 

  168. Iishi H, Tatsuta M, Baba M, Okuda S, Taniguchi H (1992) Enhancement by thyroxine of experimental carcinogenesis induced in rat colon by azoxymethane. Int J Cancer 50(6):974–976

    PubMed  CAS  Google Scholar 

  169. Plateroti M, Kress E, Mori JI, Samarut J (2006) Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol 26(8):3204–3214

    PubMed  CAS  Google Scholar 

  170. Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M (2009) The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine. J Biol Chem 284(2):1234–1241. doi:10.1074/jbc.M806548200

    PubMed  CAS  Google Scholar 

  171. Kress E, Skah S, Sirakov M, Nadjar J, Gadot N, Scoazec JY, Samarut J, Plateroti M Cooperation between the thyroid hormone receptor TRalpha1 and the WNT pathway in the induction of intestinal tumorigenesis. Gastroenterology 138(5):1863–1874. doi:10.1053/j.gastro.2010.01.041

  172. Molloy SS, Anderson ED, Jean F, Thomas G (1999) Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9(1):28–35. pii:S0962-8924(98)01382-8

    Google Scholar 

  173. Bassi DE, Mahloogi H, Klein-Szanto AJ (2000) The proprotein convertases furin and PACE4 play a significant role in tumor progression. Mol Carcinog 28(2):63–69. doi:10.1002/1098-2744(200006)28:2<63:AID-MC1>3.0.CO;2-C

    PubMed  CAS  Google Scholar 

  174. Chen RN, Huang YH, Lin YC, Yeh CT, Liang Y, Chen SL, Lin KH (2008) Thyroid hormone promotes cell invasion through activation of furin expression in human hepatoma cell lines. Endocrinology 149(8):3817–3831. doi:10.1210/en.2007-0989

    PubMed  CAS  Google Scholar 

  175. Wu SM, Huang YH, Yeh CT, Tsai MM, Liao CH, Cheng WL, Chen WJ, Lin KH (2011) Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells. Oncogene 30(17):2057–2069. doi:10.1038/onc.2010.585

    PubMed  CAS  Google Scholar 

  176. Chi HC, Chen SL, Liao CJ, Liao CH, Tsai MM, Lin YH, Huang YH, Yeh CT, Wu SM, Tseng YH, Chen CY, Tsai CY, Chung IH, Chen WJ, Lin KH (2012) Thyroid hormone receptors promote metastasis of human hepatoma cells via regulation of TRAIL. Cell Death Differ (in press)

  177. Yang L, Moses HL (2008) Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68(22):9107–9111. doi:10.1158/0008-5472.CAN-08-2556

    PubMed  CAS  Google Scholar 

  178. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. doi:10.1016/j.it.2010.04.002

    PubMed  CAS  Google Scholar 

  179. Brittan M, Wright NA (2004) Stem cell in gastrointestinal structure and neoplastic development. Gut 53(6):899–910

    PubMed  CAS  Google Scholar 

  180. Sirakov M, Plateroti M (2011) The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta. doi:10.1016/j.bbadis.2010.12.020

    PubMed  Google Scholar 

  181. Dass K, Ahmad A, Azmi A, Sarkar S, Sarkar F (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34(2):122–136. doi:10.1016/j.ctrv.2007.10.005

    PubMed  CAS  Google Scholar 

  182. Yasuda S, Morokawa N, Wong GW, Rossi A, Madhusudhan MS, Sali A, Askew YS, Adachi R, Silverman GA, Krilis SA, Stevens RL (2005) Urokinase-type plasminogen activator is a preferred substrate of the human epithelium serine protease tryptase epsilon/PRSS22. Blood 105(10):3893–3901. doi:10.1182/blood-2003-10-3501

    PubMed  CAS  Google Scholar 

  183. Chen CY, Chi LM, Chi HC, Tsai MM, Tsai CY, Tseng YH, Lin YH, Chen WJ, Huang YH, Lin KH (2012) Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells. Mol Cell Proteomics. doi:10.1074/mcp.M111.011270

  184. Nelson D, Ganss R (2006) Tumor growth or regression: powered by inflammation. J Leukoc Biol 80(4):685–690. doi:10.1189/jlb.1105646

    PubMed  CAS  Google Scholar 

  185. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D (2012) GSK-3beta: a Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012:930710. doi:10.1155/2012/930710

    PubMed  Google Scholar 

  186. Eccles SA, Paon L (2005) Breast cancer metastasis: when, where, how? Lancet 365(9464):1006–1007. doi:10.1016/S0140-6736(05)71116-8

    PubMed  Google Scholar 

  187. Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639. doi:10.1158/0008-5472.CAN-10-3220

    PubMed  CAS  Google Scholar 

  188. Baxter JD, Webb P (2009) Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 8(4):308–320. doi:10.1038/nrd2830

    PubMed  CAS  Google Scholar 

  189. Malm J, Farnegardh M, Grover GJ, Ladenson PW (2009) Thyroid hormone antagonists: potential medical applications and structure activity relationships. Curr Med Chem 16(25):3258–3266. pii:CMC-AbsEpub-012

    Google Scholar 

  190. Johansson L, Rudling M, Scanlan TS, Lundasen T, Webb P, Baxter J, Angelin B, Parini P (2005) Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci USA 102(29):10297–10302. doi:10.1073/pnas.0504379102

    PubMed  CAS  Google Scholar 

  191. Berkenstam A, Kristensen J, Mellstrom K, Carlsson B, Malm J, Rehnmark S, Garg N, Andersson CM, Rudling M, Sjoberg F, Angelin B, Baxter JD (2008) The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci USA 105(2):663–667. doi:10.1073/pnas.0705286104

    PubMed  CAS  Google Scholar 

  192. O’Shea PJ, Bassett JH, Cheng SY, Williams GR (2006) Characterization of skeletal phenotypes of TRalpha1 and TRbeta mutant mice: implications for tissue thyroid status and T3 target gene expression. Nucl Recept Signal 4:e011. doi:10.1621/nrs.04011

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chang-Gung University, Taoyuan, Taiwan (CMRPD 34013, NMRP 140511) and National Science Council of the Republic of China (NSC 94-2320-B-182-052).

Conflict of interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Huei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SM., Cheng, WL., Lin, C.D. et al. Thyroid hormone actions in liver cancer. Cell. Mol. Life Sci. 70, 1915–1936 (2013). https://doi.org/10.1007/s00018-012-1146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1146-7

Keywords

Navigation