Skip to main content
Log in

Life in the Fas lane: differential outcomes of Fas signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    PubMed  CAS  Google Scholar 

  2. Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    PubMed  CAS  Google Scholar 

  3. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    PubMed  CAS  Google Scholar 

  4. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288:2354–2357

    PubMed  CAS  Google Scholar 

  5. Leithauser F, Dhein J, Mechtersheimer G, Koretz K, Bruderlein S, Henne C, Schmidt A, Debatin KM, Krammer PH, Moller P (1993) Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 69:415–429

    PubMed  CAS  Google Scholar 

  6. Strater J, Moller P (2000) Expression and function of death receptors and their natural ligands in the intestine. Ann N Y Acad Sci 915:162–170

    PubMed  CAS  Google Scholar 

  7. Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125

    PubMed  CAS  Google Scholar 

  8. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    PubMed  CAS  Google Scholar 

  9. Brunner T, Wasem C, Torgler R, Cima I, Jakob S, Corazza N (2003) Fas (CD95/Apo-1) ligand regulation in T cell homeostasis, cell-mediated cytotoxicity and immune pathology. Semin Immunol 15:167–176

    PubMed  CAS  Google Scholar 

  10. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    PubMed  CAS  Google Scholar 

  11. Weinlich R, Brunner T, Amarante-Mendes GP (2010) Control of death receptor ligand activity by posttranslational modifications. Cell Mol Life Sci 67:1631–1642

    PubMed  CAS  Google Scholar 

  12. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S (1997) Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 186:2045–2050

    PubMed  CAS  Google Scholar 

  13. Ramaswamy M, Cleland SY, Cruz AC, Siegel RM (2009) Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Probl Cell Differ 49:17–47

    PubMed  CAS  Google Scholar 

  14. Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G (2004) First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod 10:55–63

    PubMed  CAS  Google Scholar 

  15. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22:207–220

    PubMed  CAS  Google Scholar 

  16. Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019–1022

    PubMed  CAS  Google Scholar 

  17. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  18. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    PubMed  CAS  Google Scholar 

  19. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    PubMed  CAS  Google Scholar 

  20. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    PubMed  CAS  Google Scholar 

  21. Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schutze S, Peter ME, Chan AC (2006) The role of receptor internalization in CD95 signaling. EMBO J 25:1009–1023

    PubMed  CAS  Google Scholar 

  22. Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    PubMed  CAS  Google Scholar 

  23. Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200:353–365

    PubMed  CAS  Google Scholar 

  24. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    PubMed  CAS  Google Scholar 

  25. Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, Salmon M, Lord JM (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

    PubMed  CAS  Google Scholar 

  26. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593–3598

    PubMed  CAS  Google Scholar 

  27. Pizon M, Rampanarivo H, Tauzin S, Chaigne-Delalande B, Daburon S, Castroviejo M, Moreau P, Moreau JF, Legembre P (2011) Actin-independent exclusion of CD95 by PI3K/AKT signalling: implications for apoptosis. Eur J Immunol 41:2368–2378

    PubMed  CAS  Google Scholar 

  28. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460:1035–1039

    PubMed  CAS  Google Scholar 

  29. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178:2231–2235

    PubMed  CAS  Google Scholar 

  30. Klas C, Debatin KM, Jonker RR, Krammer PH (1993) Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5:625–630

    PubMed  CAS  Google Scholar 

  31. Desbarats J, Wade T, Wade WF, Newell MK (1999) Dichotomy between naive and memory CD4(+) T cell responses to Fas engagement. Proc Natl Acad Sci USA 96:8104–8109

    PubMed  CAS  Google Scholar 

  32. Paulsen M, Valentin S, Mathew B, Adam-Klages S, Bertsch U, Lavrik I, Krammer PH, Kabelitz D, Janssen O (2011) Modulation of CD4+ T-cell activation by CD95 co-stimulation. Cell Death Differ 18:619–631

    PubMed  CAS  Google Scholar 

  33. Maksimow M, Soderstrom TS, Jalkanen S, Eriksson JE, Hanninen A (2006) Fas costimulation of naive CD4 T cells is controlled by NF-kappaB signaling and caspase activity. J Leukoc Biol 79:369–377 (Epub 2005 Dec 5)

    PubMed  CAS  Google Scholar 

  34. Hoves S, Niller HH, Krause SW, Straub R, Gluck T, Mountz JD, Scholmerich J, Fleck M (2001) Decreased T cell stimulatory capacity of monocyte-derived human macrophages following herpes simplex virus type 1 infection. Scand J Immunol 54:93–99

    PubMed  CAS  Google Scholar 

  35. Owen-Schaub LB, Meterissian S, Ford RJ (1993) Fas/APO-1 expression and function on malignant cells of hematologic and nonhematologic origin. J Immunother Emphasis Tumor Immunol 14:234–241

    PubMed  CAS  Google Scholar 

  36. Freiberg RA, Spencer DM, Choate KA, Duh HJ, Schreiber SL, Crabtree GR, Khavari PA (1997) Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J Invest Dermatol 108:215–219

    PubMed  CAS  Google Scholar 

  37. Shinohara H, Yagita H, Ikawa Y, Oyaizu N (2000) Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 60:1766–1772

    PubMed  CAS  Google Scholar 

  38. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465:492–496

    PubMed  CAS  Google Scholar 

  39. Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6:920–923

    PubMed  CAS  Google Scholar 

  40. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    PubMed  CAS  Google Scholar 

  41. Reinehr R, Sommerfeld A, Haussinger D (2008) CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells. Gastroenterology 134:1494–1506

    PubMed  CAS  Google Scholar 

  42. Lambert C, Landau AM, Desbarats J (2003) Fas-beyond death: a regenerative role for Fas in the nervous system. Apoptosis 8:551–562

    PubMed  CAS  Google Scholar 

  43. Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 27:62–74

    PubMed  CAS  Google Scholar 

  44. Park C, Sakamaki K, Tachibana O, Yamashima T, Yamashita J, Yonehara S (1998) Expression of fas antigen in the normal mouse brain. Biochem Biophys Res Commun 252:623–628

    PubMed  CAS  Google Scholar 

  45. Zuliani C, Kleber S, Klussmann S, Wenger T, Kenzelmann M, Schreglmann N, Martinez A, del Rio JA, Soriano E, Vodrazka P, Kuner R, Groene HJ, Herr I, Krammer PH, Martin-Villalba A (2006) Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell Death Differ 13:31–40

    PubMed  CAS  Google Scholar 

  46. Beier CP, Kolbl M, Beier D, Woertgen C, Bogdahn U, Brawanski A (2007) CD95/Fas mediates cognitive improvement after traumatic brain injury. Cell Res 17:732–734

    PubMed  CAS  Google Scholar 

  47. Ruan W, Lee CT, Desbarats J (2008) A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Rac1 and controls neurite growth. Mol Biol Cell 19:3192–3202

    PubMed  CAS  Google Scholar 

  48. Ballok DA, Earls AM, Krasnik C, Hoffman SA, Sakic B (2004) Autoimmune-induced damage of the midbrain dopaminergic system in lupus-prone mice. J Neuroimmunol 152:83–97

    PubMed  CAS  Google Scholar 

  49. Jayaraman T, Ondriasova E, Ondrias K, Harnick DJ, Marks AR (1995) The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc Natl Acad Sci USA 92:6007–6011

    PubMed  CAS  Google Scholar 

  50. Kovacs B, Tsokos GC (1995) Cross-linking of the Fas/APO-1 antigen suppresses the CD3-mediated signal transduction events in human T lymphocytes. J Immunol 155:5543–5549

    PubMed  CAS  Google Scholar 

  51. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci USA 96:13795–13800

    PubMed  CAS  Google Scholar 

  52. Brenner B, Ferlinz K, Grassme H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37

    PubMed  CAS  Google Scholar 

  53. Strauss G, Lindquist JA, Arhel N, Felder E, Karl S, Haas TL, Fulda S, Walczak H, Kirchhoff F, Debatin KM (2009) CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling. J Exp Med 206:1379–1393

    PubMed  CAS  Google Scholar 

  54. Suzuki I, Martin S, Boursalian TE, Beers C, Fink PJ (2000) Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J Immunol 165:5537–5543

    PubMed  CAS  Google Scholar 

  55. Puliaeva I, Puliaev R, Shustov A, Haas M, Via CS (2008) Fas expression on antigen-specific T cells has costimulatory, helper, and down-regulatory functions in vivo for cytotoxic T cell responses but not for T cell-dependent B cell responses. J Immunol 181:5912–5929

    PubMed  CAS  Google Scholar 

  56. Strauss L, Bergmann C, Whiteside TL (2009) Human circulating CD4+ CD25highFoxp3 + regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol 182:1469–1480

    PubMed  CAS  Google Scholar 

  57. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 22:22

    Google Scholar 

  58. Li H, Fan X, Stoicov C, Liu JH, Zubair S, Tsai E, Ste Marie R, Wang TC, Lyle S, Kurt-Jones E, Houghton J (2009) Human and mouse colon cancer utilizes CD95 signaling for local growth and metastatic spread to liver. Gastroenterology 137:934–944

    PubMed  CAS  Google Scholar 

  59. Trauzold A, Roder C, Sipos B, Karsten K, Arlt A, Jiang P, Martin-Subero JI, Siegmund D, Muerkoster S, Pagerols-Raluy L, Siebert R, Wajant H, Kalthoff H (2005) CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. Faseb J 19:620–622

    PubMed  CAS  Google Scholar 

  60. Gonzalvez F, Lawrence D, Yang B, Yee S, Pitti R, Marsters S, Pham VC, Stephan JP, Lill J, Ashkenazi A (2012) TRAF2 sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol Cell 48:888–899

    PubMed  CAS  Google Scholar 

  61. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    PubMed  CAS  Google Scholar 

  62. Wang J, Minemoto Y, Lin A, Li Y, Shen B, Zhang J (2007) IKK antagonizes CD95 ligation-mediated apoptosis by regulating NF-kappaB activity. Mol Immunol 44:2139–2143

    PubMed  CAS  Google Scholar 

  63. Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:9

    Google Scholar 

  64. Russo MP, Bennett BL, Manning AM, Brenner DA, Jobin C (2002) Differential requirement for NF-kappaB-inducing kinase in the induction of NF-kappaB by IL-1beta, TNF-alpha, and Fas. Am J Physiol Cell Physiol 283:C347–C357

    PubMed  CAS  Google Scholar 

  65. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3 K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540–544

    PubMed  CAS  Google Scholar 

  66. Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Grone HJ, Ganten TM, Sultmann H, Tuttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A (2008) Yes and PI3 K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248

    PubMed  CAS  Google Scholar 

  67. Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S, Drost N, Neumann A, Levi-Strauss M, Brors B, Gretz N, Edler L, Fischer C, Hill O, Thiemann M, Biglari B, Karray S, Martin-Villalba A (2010) CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32:240–252

    PubMed  CAS  Google Scholar 

  68. Steller EJ, Borel Rinkes IH, Kranenburg O (2011) How CD95 stimulates invasion. Cell Cycle 10:3857–3862

    PubMed  CAS  Google Scholar 

  69. Steller EJ, Ritsma L, Raats DA, Hoogwater FJ, Emmink BL, Govaert KM, Laoukili J, Rinkes IH, van Rheenen J, Kranenburg O (2011) The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion. EMBO Rep 12:931–937

    PubMed  CAS  Google Scholar 

  70. Lai YJ, Lin VT, Zheng Y, Benveniste EN, Lin FT (2010) The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol 30:5582–5596

    PubMed  CAS  Google Scholar 

  71. Nijkamp MW, Hoogwater FJ, Steller EJ, Westendorp BF, van der Meulen TA, Leenders MW, Borel Rinkes IH, Kranenburg O (2010) CD95 is a key mediator of invasion and accelerated outgrowth of mouse colorectal liver metastases following radiofrequency ablation. J Hepatol 53:1069–1077

    PubMed  CAS  Google Scholar 

  72. Nijkamp MW, Hoogwater FJ, Govaert KM, Steller EJ, Verheem A, Kranenburg O, Borel Rinkes IH (2011) A role for CD95 signaling in ischemia/reperfusion-induced invasion and outgrowth of colorectal micrometastases in mouse liver. J Surg Oncol 104:198–204

    PubMed  CAS  Google Scholar 

  73. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738–743

    PubMed  CAS  Google Scholar 

  74. Turvey SE, Gonzalez-Nicolini V, Kingsley CI, Larregina AT, Morris PJ, Castro MG, Lowenstein PR, Wood KJ (2000) Fas ligand-transfected myoblasts and islet cell transplantation. Transplantation 69:1972–1976

    PubMed  CAS  Google Scholar 

  75. O’Brien D, O’Connor T, Shanahan F, O’Connell J (2002) Activation of the p38 MAPK and ERK1/2 pathways is required for Fas-induced IL-8 production in colonic epithelial cells. Ann N Y Acad Sci 973:161–165

    PubMed  Google Scholar 

  76. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182:3801–3808

    PubMed  CAS  Google Scholar 

  77. Farnand AW, Eastman AJ, Herrero R, Hanson JF, Mongovin S, Altemeier WA, Matute-Bello G (2011) Fas activation in alveolar epithelial cells induces KC (CXCL1) release by a MyD88-dependent mechanism. Am J Respir Cell Mol Biol 45:650–658

    PubMed  CAS  Google Scholar 

  78. Arai K, Liu ZX, Lane T, Dennert G (2002) IP-10 and Mig facilitate accumulation of T cells in the virus-infected liver. Cell Immunol 219:48–56

    PubMed  CAS  Google Scholar 

  79. Palao G, Santiago B, Galindo MA, Rullas JN, Alcami J, Ramirez JC, Pablos JL (2006) Fas activation of a proinflammatory program in rheumatoid synoviocytes and its regulation by FLIP and caspase 8 signaling. Arthritis Rheum 54:1473–1481

    PubMed  CAS  Google Scholar 

  80. Lee SM, Kim EJ, Suk K, Lee WH (2012) Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-kappaB in THP-1 cells. Cell Immunol 271:157–162

    Google Scholar 

  81. Park DR, Thomsen AR, Frevert CW, Pham U, Skerrett SJ, Kiener PA, Liles WC (2003) Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 170:6209–6216

    PubMed  CAS  Google Scholar 

  82. Rensing-Ehl A, Hess S, Ziegler-Heitbrock HW, Riethmuller G, Engelmann H (1995) Fas/Apo-1 activates nuclear factor kappa B and induces interleukin-6 production. J Inflamm 45:161–174

    PubMed  CAS  Google Scholar 

  83. Fujiwara M, Suemoto H, Muragaki Y, Ooshima A (2007) Fas-mediated upregulation of vascular endothelial growth factor and monocyte chemoattractant protein-1 expression in cultured dermal fibroblasts: role in the inflammatory response. J Dermatol 34:99–109

    PubMed  CAS  Google Scholar 

  84. Becker KA, Henry B, Ziobro R, Tummler B, Gulbins E, Grassme H (2012) Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med 90:1011–1023

    PubMed  CAS  Google Scholar 

  85. Ma Y, Liu H, Tu-Rapp H, Thiesen HJ, Ibrahim SM, Cole SM, Pope RM (2004) Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5:380–387

    PubMed  CAS  Google Scholar 

  86. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    PubMed  CAS  Google Scholar 

  87. Seko Y, Kayagaki N, Seino K, Yagita H, Okumura K, Nagai R (2002) Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3. J Am Coll Cardiol 39:1399–1403

    PubMed  CAS  Google Scholar 

  88. Perl M, Chung CS, Perl U, Lomas-Neira J, de Paepe M, Cioffi WG, Ayala A (2007) Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 176:591–601

    PubMed  CAS  Google Scholar 

  89. Altemeier WA, Zhu X, Berrington WR, Harlan JM, Liles WC (2007) Fas (CD95) induces macrophage proinflammatory chemokine production via a MyD88-dependent, caspase-independent pathway. J Leukoc Biol 82:721–728

    PubMed  Google Scholar 

  90. Zhande R, Dauphinee SM, Thomas JA, Yamamoto M, Akira S, Karsan A (2007) FADD negatively regulates lipopolysaccharide signaling by impairing interleukin-1 receptor-associated kinase 1-MyD88 interaction. Mol Cell Biol 27:7394–7404

    PubMed  CAS  Google Scholar 

  91. Fukui M, Imamura R, Umemura M, Kawabe T, Suda T (2003) Pathogen-associated molecular patterns sensitize macrophages to Fas ligand-induced apoptosis and IL-1beta release. J Immunol 171:1868–1874

    PubMed  CAS  Google Scholar 

  92. Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S (1997) Essential roles of the Fas ligand in the development of hepatitis. Nat Med 3:409–413

    PubMed  CAS  Google Scholar 

  93. Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, Borkhardt A, Kabelitz D, Janssen O (2002) Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178). FEBS Lett 519:50–58

    PubMed  CAS  Google Scholar 

  94. Sun M, Ames KT, Suzuki I, Fink PJ (2006) The cytoplasmic domain of Fas ligand costimulates TCR signals. J Immunol 177:1481–1491

    PubMed  CAS  Google Scholar 

  95. Lin HC, Lai PY, Lin YP, Huang JY, Yang BC (2012) Fas ligand enhances malignant behavior of tumor cells through interaction with Met, hepatocyte growth factor receptor, in lipid rafts. J Biol Chem 287:20664–20673

    PubMed  CAS  Google Scholar 

  96. Mimouni-Rongy M, White JH, Weinstein DE, Desbarats J, Almazan G (2011) Fas ligand acts as a counter-receptor in Schwann cells and induces the secretion of bioactive nerve growth factor. J Neuroimmunol 230:17–25

    PubMed  CAS  Google Scholar 

  97. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    PubMed  CAS  Google Scholar 

  98. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762

    PubMed  CAS  Google Scholar 

  99. Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, Karray S, Giani A, John SW, Chen DF, Marshak-Rothstein A, Ksander BR (2011) Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS ONE 6:e17659

    PubMed  CAS  Google Scholar 

  100. Hohlbaum AM, Moe S, Marshak-Rothstein A (2000) Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 191:1209–1220

    PubMed  CAS  Google Scholar 

  101. Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A (2001) Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J Immunol 167:6217–6224

    PubMed  CAS  Google Scholar 

  102. Niu J, Azfer A, Deucher MF, Goldschmidt-Clermont PJ, Kolattukudy PE (2006) Targeted cardiac expression of soluble Fas prevents the development of heart failure in mice with cardiac-specific expression of MCP-1. J Mol Cell Cardiol 40:810–820

    PubMed  CAS  Google Scholar 

  103. O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Google Scholar 

  104. Ahn JH, Park SM, Cho HS, Lee MS, Yoon JB, Vilcek J, Lee TH (2001) Non-apoptotic Signaling Pathways Activated by Soluble Fas Ligand in Serum-starved Human Fibroblasts. Mitogen-Activated Protein Kinases and NF-kappa B-dependent gene expression. J Biol Chem 276:47100–47106

    PubMed  CAS  Google Scholar 

  105. Niu FN, Zhang X, Hu XM, Chen J, Chang LL, Li JW, Liu Z, Cao W, Xu Y (2012) Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behav Immun 26:61–71

    PubMed  CAS  Google Scholar 

  106. Ramsdell F, Seaman MS, Miller RE, Tough TW, Alderson MR, Lynch DH (1994) gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol 24:928–933

    PubMed  CAS  Google Scholar 

  107. Morgan MJ, Kim YS, Liu ZG (2009) Membrane-bound Fas ligand requires RIP1 for efficient activation of caspase-8 within the death-inducing signaling complex. J Immunol 183:3278–3284

    PubMed  CAS  Google Scholar 

  108. Ryan AE, Shanahan F, O’Connell J, Houston AM (2005) Addressing the “Fas counterattack” controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res 65:9817–9823

    PubMed  CAS  Google Scholar 

  109. Abrahams VM, Straszewski SL, Kamsteeg M, Hanczaruk B, Schwartz PE, Rutherford TJ, Mor G (2003) Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res 63:5573–5581

    PubMed  CAS  Google Scholar 

  110. Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744

    PubMed  CAS  Google Scholar 

  111. Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schutze S (2011) Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 90:467–475

    PubMed  CAS  Google Scholar 

  112. Chakrabandhu K, Huault S, Garmy N, Fantini J, Stebe E, Mailfert S, Marguet D, Hueber AO (2008) The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death Differ 15:1824–1837

    PubMed  CAS  Google Scholar 

  113. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS ONE 4:e5044

    PubMed  Google Scholar 

  114. Feig C, Tchikov V, Schutze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26:221–231

    PubMed  CAS  Google Scholar 

  115. Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH (2007) Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem 282:13664–13671

    PubMed  CAS  Google Scholar 

  116. Legembre P, Barnhart BC, Zheng L, Vijayan S, Straus SE, Puck J, Dale JK, Lenardo M, Peter ME (2004) Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 5:1084–1089

    PubMed  CAS  Google Scholar 

  117. Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286:22982–22990

    PubMed  CAS  Google Scholar 

  118. Seales EC, Jurado GA, Singhal A, Bellis SL (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 22:7137–7145

    PubMed  CAS  Google Scholar 

  119. Hoogwater FJ, Nijkamp MW, Smakman N, Steller EJ, Emmink BL, Westendorp BF, Raats DA, Sprick MR, Schaefer U, Van Houdt WJ, De Bruijn MT, Schackmann RC, Derksen PW, Medema JP, Walczak H, Borel Rinkes IH, Kranenburg O (2010) Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138:2357–2367

    PubMed  CAS  Google Scholar 

  120. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    PubMed  CAS  Google Scholar 

  121. Yu JW, Shi Y (2008) FLIP and the death effector domain family. Oncogene 27:6216–6227

    PubMed  CAS  Google Scholar 

  122. Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:377–389

    PubMed  CAS  Google Scholar 

  123. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714

    PubMed  CAS  Google Scholar 

  124. Ozturk S, Schleich K, Lavrik IN (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res 318:1324–1331

    PubMed  CAS  Google Scholar 

  125. Lens SM, Kataoka T, Fortner KA, Tinel A, Ferrero I, MacDonald RH, Hahne M, Beermann F, Attinger A, Orbea HA, Budd RC, Tschopp J (2002) The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol Cell Biol 22:5419–5433

    PubMed  CAS  Google Scholar 

  126. Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (2000) The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10:640–648

    PubMed  CAS  Google Scholar 

  127. Golan-Gerstl R, Wallach-Dayan SB, Zisman P, Cardoso WV, Goldstein RH, Breuer R (2012) Cellular FLICE-like inhibitory protein deviates myofibroblast Fas-induced apoptosis toward proliferation during lung fibrosis. Am J Respir Cell Mol Biol 47:271–279

    PubMed  CAS  Google Scholar 

  128. Roder C, Trauzold A, Kalthoff H (2011) Impact of death receptor signaling on the malignancy of pancreatic ductal adenocarcinoma. Eur J Cell Biol 90:450–455

    PubMed  Google Scholar 

  129. Kavuri SM, Geserick P, Berg D, Dimitrova DP, Feoktistova M, Siegmund D, Gollnick H, Neumann M, Wajant H, Leverkus M (2011) Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J Biol Chem 286:16631–16646

    PubMed  CAS  Google Scholar 

  130. Siegmund D, Wicovsky A, Schmitz I, Schulze-Osthoff K, Kreuz S, Leverkus M, Dittrich-Breiholz O, Kracht M, Wajant H (2005) Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing. Mol Cell Biol 25:6363–6379

    PubMed  CAS  Google Scholar 

  131. Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O, Hacker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wajant H (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380

    PubMed  CAS  Google Scholar 

  132. Kober AM, Legewie S, Pforr C, Fricker N, Eils R, Krammer PH, Lavrik IN (2011) Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis 2011:93

    Google Scholar 

  133. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279

    PubMed  CAS  Google Scholar 

  134. Kataoka T, Tschopp J (2004) N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol 24:2627–2636

    PubMed  CAS  Google Scholar 

  135. Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L (2000) Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 19:4451–4460

    PubMed  CAS  Google Scholar 

  136. Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J, Davis RJ, Biemann HP, Blenis J (1997) Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 17:24–35

    PubMed  CAS  Google Scholar 

  137. Matsumoto N, Imamura R, Suda T (2007) Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production. FEBS J 274:2376–2384

    PubMed  CAS  Google Scholar 

  138. Nguyen XH, Lang PA, Lang KS, Adam D, Fattakhova G, Foger N, Kamal MA, Prilla P, Mathieu S, Wagner C, Mak T, Chan AC, Lee KH (2011) Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood 118:598–608

    PubMed  CAS  Google Scholar 

  139. Hitoshi Y, Lorens J, Kitada SI, Fisher J, LaBarge M, Ring HZ, Francke U, Reed JC, Kinoshita S, Nolan GP (1998) Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 8:461–471

    PubMed  CAS  Google Scholar 

  140. Song Y, Jacob CO (2005) The mouse cell surface protein TOSO regulates Fas/Fas ligand-induced apoptosis through its binding to Fas-associated death domain. J Biol Chem 280:9618–9626

    PubMed  CAS  Google Scholar 

  141. Ehrenschwender M, Siegmund D, Wicovsky A, Kracht M, Dittrich-Breiholz O, Spindler V, Waschke J, Kalthoff H, Trauzold A, Wajant H (2010) Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation. Cell Death Differ 17:1435–1447

    PubMed  CAS  Google Scholar 

  142. Kazama H, Yonehara S (2000) Oncogenic K-Ras and basic fibroblast growth factor prevent Fas-mediated apoptosis in fibroblasts through activation of mitogen-activated protein kinase. J Cell Biol 148:557–566

    PubMed  CAS  Google Scholar 

  143. Houston A, Waldron-Lynch FD, Bennett MW, Roche D, O’Sullivan GC, Shanahan F, O’Connell J (2003) Fas ligand expressed in colon cancer is not associated with increased apoptosis of tumor cells in vivo. Int J Cancer 107:209–214

    PubMed  CAS  Google Scholar 

  144. Saas P, Boucraut J, Quiquerez AL, Schnuriger V, Perrin G, Desplat-Jego S, Bernard D, Walker PR, Dietrich PY (1999) CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J Immunol 162:2326–2333

    PubMed  CAS  Google Scholar 

  145. Abreu-Martin MT, Vidrich A, Lynch DH, Targan SR (1995) Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J Immunol 155:4147–4154

    PubMed  CAS  Google Scholar 

  146. Barreiros AP, Sprinzl M, Rosset S, Hohler T, Otto G, Theobald M, Galle PR, Strand D, Strand S (2009) EGF and HGF levels are increased during active HBV infection and enhance survival signaling through extracellular matrix interactions in primary human hepatocytes. Int J Cancer 124:120–129

    PubMed  CAS  Google Scholar 

  147. Chen J, Zhang H, Su F, Min J, Zhang J, Song E (2002) Cytokine associated sensitivity of colon carcinoma cells to FasR-mediated cytotoxicity of CTL. Asian J Surg 25:89–97

    PubMed  Google Scholar 

  148. Rethi B, Vivar N, Sammicheli S, Fluur C, Ruffin N, Atlas A, Rajnavolgyi E, Chiodi F (2008) Priming of T cells to Fas-mediated proliferative signals by interleukin-7. Blood 112:1195–1204

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aileen Houston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brint, E., O’Callaghan, G. & Houston, A. Life in the Fas lane: differential outcomes of Fas signaling. Cell. Mol. Life Sci. 70, 4085–4099 (2013). https://doi.org/10.1007/s00018-013-1327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1327-z

Keywords

Navigation