Skip to main content

Advertisement

Log in

Double deficiency of cathepsins B and L results in massive secretome alterations and suggests a degradative cathepsin-MMP axis

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endolysosomal cysteine cathepsins functionally cooperate. Cathepsin B (Ctsb) and L (Ctsl) double-knockout mice die 4 weeks after birth accompanied by (autophago-) lysosomal accumulations within neurons. Such accumulations are also observed in mouse embryonic fibroblasts (MEFs) deficient for Ctsb and Ctsl. Previous studies showed a strong impact of Ctsl on the MEF secretome. Here we show that Ctsb alone has only a mild influence on extracellular proteome composition. Protease cleavage sites dependent on Ctsb were identified by terminal amine isotopic labeling of substrates (TAILS), revealing a prominent yet mostly indirect impact on the extracellular proteolytic cleavages. To investigate the cooperation of Ctsb and Ctsl, we performed a quantitative secretome comparison of wild-type MEFs and Ctsb / Ctsl / MEFs. Deletion of both cathepsins led to drastic alterations in secretome composition, highlighting cooperative functionality. While many protein levels were decreased, immunodetection corroborated increased levels of matrix metalloproteinase (MMP)-2. Re-expression of Ctsl rescues MMP-2 abundance. Ctsl and to a much lesser extent Ctsb are able to degrade MMP-2 at acidic and neutral pH. Addition of active MMP-2 to the MEF secretome degrades proteins whose levels were also decreased by Ctsb and Ctsl double deficiency. These results suggest a degradative Ctsl—MMP-2 axis, resulting in increased MMP-2 levels upon cathepsin deficiency with subsequent degradation of secreted proteins such as collagen α-1 (I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

BM:

Basement membrane

BSA:

Bovine serum albumin

CCM:

Cell-conditioned media

Ctsb:

Cathepsin B

Ctsd:

Cathepsin D

Ctsl:

Cathepsin L

Ctsz:

Cathepsin Z

DMEM:

Dulbecco’s modified Eagle's medium

DTT:

Dithiothreitol

E64d:

(2S, 3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester

ECM:

Extracellular matrix

EDTA:

Ethylene diamine tetraacetic acid

FACS:

Fluorescence-assisted cell sorting

Fc:

Fold change

GFP:

Green fluorescent protein

GO:

Gene ontology

HPLC:

High-performance liquid chromatography

IGF:

Insulin-like growth factor

IGFBP:

Insulin-like growth factor-binding protein

IRES:

Internal ribosomal entry site

Lamp:

Lysosome-associated membrane glycoprotein

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

LDH:

Lactate dehydrogenase

LEF:

Lymphocyte enhancer factor

MEF:

Mouse embryonic fibroblast

MMP:

Matrix metalloprotease

MS:

Mass spectrometry

NCAM:

Neural cell adhesion molecule

ON:

Overnight

PBS:

Phosphate-buffered saline

PICS:

Proteomic identification of protease cleavage sites

PMSF:

Phenylmethanesulfonyl fluoride

POSTN:

Periostin

PVDF:

Polyvinylidene fluoride

SCX:

Strong cation exchange

SDS:

Sodium dodecylsulfate

STRING:

Search tool for the retrieval of interacting genes

SFRP:

Secreted frizzled-related protein

TAILS:

Terminal amine isotopic labeling of substrates

TCF:

T-cell factor

wt:

Wild-type

XIC:

Extracted ions chromatograms

References

  1. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20(17):4629–4633. doi:10.1093/emboj/20.17.4629

    Article  CAS  PubMed  Google Scholar 

  2. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38(Database issue):D227–233. doi:10.1093/nar/gkp971

    Google Scholar 

  3. Aronson NN Jr, Barrett AJ (1978) The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem J 171(3):759–765

    CAS  PubMed  Google Scholar 

  4. Barbarin A, Frade R (2011) Procathepsin L secretion, which triggers tumor progression, is regulated by Rab4A in human melanoma cells. Biochem J. doi:10.1042/BJ20110361

    PubMed  Google Scholar 

  5. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5(5):443–453

    Article  CAS  PubMed  Google Scholar 

  6. Jane DT, Morvay L, Dasilva L, Cavallo-Medved D, Sloane BF, Dufresne MJ (2006) Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH. Biol Chem 387(2):223–234. doi:10.1515/BC.2006.030

    Article  CAS  PubMed  Google Scholar 

  7. Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90(2):194–207. doi:10.1016/j.biochi.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  8. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6(10):764–775. doi:10.1038/nrc1949

    Article  CAS  PubMed  Google Scholar 

  9. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431. doi:10.1172/JCI42918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20(5):543–556. doi:10.1101/gad.1407406

    Article  CAS  PubMed  Google Scholar 

  11. Sevenich L, Werner F, Gajda M, Schurigt U, Sieber C, Muller S, Follo M, Peters C, Reinheckel T (2011) Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30(1):54–64. doi:10.1038/onc.2010.387

    Article  CAS  PubMed  Google Scholar 

  12. Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M (2001) Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res 11(9):1463–1468. doi:10.1101/gr.207401

    Article  CAS  PubMed  Google Scholar 

  13. Tholen S, Biniossek ML, Gessler AL, Muller S, Weisser J, Kizhakkedathu JN, Reinheckel T, Schilling O (2011) Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol Chem 392(11):961–971. doi:10.1515/BC.2011.162

    Article  CAS  PubMed  Google Scholar 

  14. Tholen S, Biniossek ML, Gansz M, Gomez-Auli A, Werner F, Noel A, Kizhakkedathu JN, Boerries M, Busch H, Reinheckel T, Schilling O (2012) Deletion of cysteine cathepsins B or L yields differential impacts on murine skin proteome and degradome. Mol Cell Proteomics. doi:10.1074/mcp.M112.017962

    PubMed  Google Scholar 

  15. Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99(12):7883–7888. doi:10.1073/pnas.112632299

    Article  CAS  PubMed  Google Scholar 

  16. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, Saftig P, Uchiyama Y (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167(6):1713–1728. doi:10.1016/S0002-9440(10)61253-9

    Article  CAS  PubMed  Google Scholar 

  17. Stahl S, Reinders Y, Asan E, Mothes W, Conzelmann E, Sickmann A, Felbor U (2007) Proteomic analysis of cathepsin B- and L-deficient mouse brain lysosomes. Biochim Biophys Acta 1774(10):1237–1246. doi:10.1016/j.bbapap.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494. doi:10.1038/nprot.2009.21

    Article  CAS  PubMed  Google Scholar 

  19. Guo K, Ji C, Li L (2007) Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem 79(22):8631–8638. doi:10.1021/ac0704356

    Article  CAS  PubMed  Google Scholar 

  20. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28(3):281–288. doi:10.1038/nbt.1611

    Article  CAS  PubMed  Google Scholar 

  21. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3(10):1912–1919. doi:10.1002/pmic.200300534

    Article  CAS  PubMed  Google Scholar 

  22. Dennemarker J, Lohmuller T, Muller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T (2010) Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem 391(8):913–922. doi:10.1515/BC.2010.097

    Article  PubMed  Google Scholar 

  23. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18(12):3587–3596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466. doi:10.1038/nbt1031

    Article  CAS  PubMed  Google Scholar 

  26. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. doi:10.1093/bioinformatics/btn323

    Article  CAS  PubMed  Google Scholar 

  27. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467. doi:10.1093/bioinformatics/bth092

    Article  CAS  PubMed  Google Scholar 

  28. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  CAS  PubMed  Google Scholar 

  29. Cochrane GR (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38(Database issue):D142–148. doi:10.1093/nar/gkp846

  30. Martens L, Vandekerckhove J, Gevaert K (2005) DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 21(17):3584–3585. doi:10.1093/bioinformatics/bti588

    Article  CAS  PubMed  Google Scholar 

  31. Li XJ, Zhang H, Ranish JA, Aebersold R (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75(23):6648–6657. doi:10.1021/ac034633i

    Article  CAS  PubMed  Google Scholar 

  32. Mo F, Mo Q, Chen Y, Goodlett DR, Hood L, Omenn GS, Li S, Lin B (2010) WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis. BMC Bioinform 11:219. doi:10.1186/1471-2105-11-219

    Article  Google Scholar 

  33. Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951. doi:10.1038/nbt1001-946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kleifeld O, Doucet A, Prudova A, Auf dem Keller U, Gioia M, Kizhakkedathu J, Overall CM (2011) System-wide proteomic identification of protease cleavage products by terminal amine isotopic labeling of substrates. Nat Prot 6(10):1578–1611. doi:10.1038/nprot.2011.382

    Google Scholar 

  35. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  PubMed  Google Scholar 

  36. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8(3):443–450. doi:10.1074/mcp.M800258-MCP200

    Article  CAS  PubMed  Google Scholar 

  37. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3(6):608–614. doi:10.1074/mcp.T400003-MCP200

    Article  CAS  PubMed  Google Scholar 

  38. Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, Matthias R, Monnig G, Haverkamp W, Breithardt G, Schmahl W, Peters C, Reinheckel T (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 99(9):6234–6239. doi:10.1073/pnas.092637699

    Article  CAS  PubMed  Google Scholar 

  39. Petermann I, Mayer C, Stypmann J, Biniossek ML, Tobin DJ, Engelen MA, Dandekar T, Grune T, Schild L, Peters C, Reinheckel T (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. Faseb J 20(8):1266–1268. doi:10.1096/fj.05-5517fje

    Article  CAS  PubMed  Google Scholar 

  40. Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K (2003) Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 111(11):1733–1745. doi:10.1172/JCI15990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tobin DJ, Foitzik K, Reinheckel T, Mecklenburg L, Botchkarev VA, Peters C, Paus R (2002) The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol 160(5):1807–1821. doi:10.1016/S0002-9440(10)61127-3

    Article  CAS  PubMed  Google Scholar 

  42. Dean RA, Overall CM (2007) Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol Cell Proteomics 6(4):611–623. doi:10.1074/mcp.M600341-MCP200

    Article  CAS  PubMed  Google Scholar 

  43. Planque C, Kulasingam V, Smith CR, Reckamp K, Goodglick L, Diamandis EP (2009) Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics 8(12):2746–2758. doi:10.1074/mcp.M900134-MCP200

    Article  CAS  PubMed  Google Scholar 

  44. Xu BJ, Yan W, Jovanovic B, An AQ, Cheng N, Aakre ME, Yi Y, Eng J, Link AJ, Moses HL (2010) Quantitative analysis of the secretome of TGF-beta signaling-deficient mammary fibroblasts. Proteomics 10(13):2458–2470. doi:10.1002/pmic.200900701

    Article  CAS  PubMed  Google Scholar 

  45. Makawita S, Smith C, Batruch I, Zheng Y, Ruckert F, Grutzmann R, Pilarsky C, Gallinger S, Diamandis EP (2011) Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers. Mol Cell Proteomics 10(10):M111.008599. doi:10.1074/mcp.M111.008599

    Article  PubMed  Google Scholar 

  46. auf dem Keller U, Schilling O (2010) Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 92(11):1705–1714. doi:10.1016/j.biochi.2010.04.027

    Article  Google Scholar 

  47. Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 9(5):894–911. doi:10.1074/mcp.M000050-MCP201

    Article  CAS  PubMed  Google Scholar 

  48. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282(Pt 1):273–278

    CAS  PubMed  Google Scholar 

  49. Creemers LB, Hoeben KA, Jansen DC, Buttle DJ, Beertsen W, Everts V (1998) Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol 16(9):575–584

    Article  CAS  PubMed  Google Scholar 

  50. Guinec N, Dalet-Fumeron V, Pagano M (1993) “In vitro” study of basement membrane degradation by the cysteine proteinases, cathepsins B, B-like and L. Digestion of collagen IV, laminin, fibronectin, and release of gelatinase activities from basement membrane fibronectin. Biol Chem Hoppe Seyler 374(12):1135–1146

    Article  CAS  PubMed  Google Scholar 

  51. Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Kruger A, Schurigt U, Sevenich L, Turk B, Peters C, Reinheckel T (2008) Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27(30):4191–4199. doi:10.1038/onc.2008.59

    Article  CAS  PubMed  Google Scholar 

  52. Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26(6):685–694. doi:10.1038/nbt1408

    Article  CAS  PubMed  Google Scholar 

  53. Schilling O, auf dem Keller U, Overall CM (2011) Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites. Biol Chem 392(11):1031–1037. doi:10.1515/BC.2011.158

    Article  CAS  PubMed  Google Scholar 

  54. Schilling O, Huesgen PF, Barre O, Auf dem Keller U, Overall CM (2011) Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat Protoc 6(1):111–120. doi:10.1038/nprot.2010.178

    Article  CAS  PubMed  Google Scholar 

  55. Biniossek ML, Nagler DK, Becker-Pauly C, Schilling O (2011) Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 10(12):5363–5373. doi:10.1021/pr200621z

    Article  CAS  PubMed  Google Scholar 

  56. Bernhardt A, Kuester D, Roessner A, Reinheckel T, Krueger S (2010) Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection. J Biol Chem 285(44):33691–33700. doi:10.1074/jbc.M110.146183

    Article  CAS  PubMed  Google Scholar 

  57. Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S, Vasiljeva O, Schwinde A, Klemm N, Deussing J, Peters C, Reinheckel T (2010) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci USA 107(6):2497–2502. doi:10.1073/pnas.0907240107

    Article  CAS  PubMed  Google Scholar 

  58. Wille A, Gerber A, Heimburg A, Reisenauer A, Peters C, Saftig P, Reinheckel T, Welte T, Buhling F (2004) Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells. Biol Chem 385(7):665–670. doi:10.1515/BC.2004.082

    Article  CAS  PubMed  Google Scholar 

  59. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–568. doi:10.1093/nar/gkq973

    Google Scholar 

  60. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31(12):2714–2736. doi:10.1038/emboj.2012.150

    Article  CAS  PubMed  Google Scholar 

  61. Adams PD, Enders GH (2008) Wnt-signaling and senescence: a tug of war in early neoplasia? Cancer Biol Ther 7(11):1706–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Caldwell GM, Jones CE, Taniere P, Warrack R, Soon Y, Matthews GM, Morton DG (2006) The Wnt antagonist sFRP1 is downregulated in premalignant large bowel adenomas. Br J Cancer 94(6):922–927. doi:10.1038/sj.bjc.6602967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lah TT, Buck MR, Honn KV, Crissman JD, Rao NC, Liotta LA, Sloane BF (1989) Degradation of laminin by human tumor cathepsin B. Clin Exp Metastasis 7(4):461–468

    Article  CAS  PubMed  Google Scholar 

  64. Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarcic B (2007) Interaction between human cathepsins K, L, and S and elastins: mechanism of elastinolysis and inhibition by macromolecular inhibitors. J Biol Chem 282(11):7893–7902. doi:10.1074/jbc.M610107200

    Article  CAS  PubMed  Google Scholar 

  65. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89. doi:10.1038/nature10694

    Article  CAS  Google Scholar 

  66. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102(7):752–760. doi:10.1161/CIRCRESAHA.107.159517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101(3):695–711. doi:10.1002/jcb.21224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189(3):300–308. doi:10.1002/(SICI)1096-9896(199911)189:3<300:AID-PATH456>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  69. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. doi:10.1038/nrc745

    Article  CAS  PubMed  Google Scholar 

  70. Loffek S, Schilling O, Franzke CW (2011) Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38(1):191–208. doi:10.1183/09031936.00146510

    Article  CAS  PubMed  Google Scholar 

  71. Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem 270(11):5872–5876

    Article  CAS  PubMed  Google Scholar 

  72. Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem 194(3):721–730

    Article  CAS  PubMed  Google Scholar 

  73. Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE (1989) Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin. J Biol Chem 264(7):3822–3826

    CAS  PubMed  Google Scholar 

  74. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4(7):1985–1988. doi:10.1002/pmic.200300721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

O.S. is supported by an Emmy-Noether grant from the Deutsche Forschungsgemeinschaft (DFG) (SCHI 871/2), a starting grant from the European Research Council (Programme “Ideas”—call identifier: ERC-2011-StG 282111-ProteaSys), and the Excellence Initiative of the German Federal and State Governments (EXC 294, BIOSS). J.N.K. acknowledges the Michael Smith Foundation for the Health Research (MSFHR) career investigator scholar award. T.R. is supported by Deutsche Forschungsgemeinschaft SFB 850 project B7 and grant Re158416-1, and furthermore by the Excellence Initiative of the German Federal and State Governments (EXC 294 and GSC-4, Spemann Graduate School). The authors thank Prof. Dr. Christoph Peters and Florian Christoph Sigloch for critical discussion. Franz Jehle and Bettina Mayer are acknowledged for excellent technical assistance. The authors thank Dr. Dorit Nägler, Munich, for the kind gift of recombinant CTSB and CTSL, Dr. Ulrich Maurer, Freiburg, for assistance with the pMIG system, and Dr. Gill Murphy for kindly providing recombinant human MMP-2. The core facility of the Universitätsklinikum Freiburg (Dr. Marie Follo and Klaus Geiger) is acknowledged for sorting cell lines.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schilling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2013_1406_MOESM1_ESM.pptx

Supplementary Figure S1: Western blot analysis of Ctsb and Ctsl in cell-conditioned media of two different primary MEF populations and the two SV40 immortalized wild-type MEF cell lines. Supplementary Figure S2: Characterization of the wild-type mouse embryonic fibroblast cell lines, Ctsb knockout cell lines, and Ctsb Ctsl knockout cell lines used in this study. (A) Proliferation rate of all MEF cell lines. Proliferation data are presented as mean ± SEM (n = 3). (B) Western blot analysis of Lamp-1. MEF collection a was used for analysis and revealed an increase in Lamp-1 upon single Ctsl as well as double Ctsb and Ctsl deficiency. Lamp-1 signal intensities were quantified and normalized according to tubulin signal intensities. (C) Lactate dehydrogenase (LDH) – release of all cell lines after incubation in serum-free conditions for 24 h. Data are presented as mean normalized to wt a ± SEM (n = 3). Supplementary Figure S3: Distribution profiles of fold change values (log2) for all proteins identified in the quantitative proteome comparisons. (A) Replicate 1 of the secretome comparison of the first wild-type MEF cell line and the first Ctsb-deficient MEF cell line. (B) Replicate 2 of the secretome comparison of the second wild-type MEF cell line and the second Ctsb-deficient MEF cell line. (C) Replicate 1 of the secretome comparison of the first wild-type MEF cell line and the first Ctsb Ctsl double-deficient MEF cell line. (D) Replicate 2 of the secretome comparison of the second wild-type MEF cell line and the second Ctsb Ctsl double-deficient MEF cell line. Fold changes lower than -0.58 and higher than 0.58 represent changes in protein abundance of more than 50 %. A fold change of 0 indicates unaffected protein abundance. (D) Western blot analysis of β-catenin in total cell lysate (TCL) of wild-type, Ctsb-deficient, Ctsl-deficient and Ctsb Ctsl double-deficient MEFs. Tubulin expression was used as loading control. Supplementary Figure S4: Biological processes mainly affected by Ctsb and Ctsl depletion. Results were obtained by analyzing abundance alterations of all extracellular and secreted proteins in the quantitative proteome comparison of wild-type and Ctsb Ctsl-deficient MEFs by STRING (Search Tool for the Retrieval of Interacting Genes/Proteins). Supplementary Figure S5: (A) Western blot analysis of N-cadherin in total cell lysates (TCL) of wild-type, Ctsb-deficient, Ctsl-deficient, and Ctsb Ctsl double-deficient MEFs. Tubulin expression was used as loading control. N-cadherin signal intensities were quantified and normalized according to tubulin signal intensities. (B) Western blot analysis of β-catenin in total cell lysate (TCL) of wild-type, Ctsb-deficient, Ctsl-deficient, and Ctsb Ctsl double-deficient MEFs. Tubulin expression was used as loading control. β-Catenin signal intensities were quantified and normalized according to tubulin signal intensities. Supplementary Figure S6: Western blot analysis of MMP-2 in cell-conditioned media of wild-type, Ctsb-deficient, Ctsl-deficient, and Ctsb Ctsl double-deficient MEFs grown upon different conditions. MEFs were grown on uncoated and coated plates, either coated with fibronectin or collagen type IV. MEFs were cultured in serum-free DMEM, serum-free DMEM without arginine and lysine, or serum-free DMEM containing 0.1 % albumin without arginine and lysine. (PPTX 1041 kb)

Supplementary material 2 (PDF 356 kb)

Supplementary material 3 (PDF 365 kb)

Supplementary material 4 (PDF 236 kb)

Supplementary material 5 (PDF 423 kb)

Supplementary material 6 (PDF 121 kb)

Supplementary material 7 (PDF 131 kb)

Supplementary material 8 (PDF 494 kb)

Supplementary material 9 (PDF 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tholen, S., Biniossek, M.L., Gansz, M. et al. Double deficiency of cathepsins B and L results in massive secretome alterations and suggests a degradative cathepsin-MMP axis. Cell. Mol. Life Sci. 71, 899–916 (2014). https://doi.org/10.1007/s00018-013-1406-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1406-1

Keywords

Navigation