Skip to main content
Log in

Glutamine deprivation initiates reversible assembly of mammalian rods and rings

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Rods and rings (RR) are protein assemblies composed of cytidine triphosphate synthetase type 1 (CTPS1) and inosine monophosphate dehydrogenase type 2 (IMPDH2), key enzymes in CTP and GTP biosynthesis. Small-molecule inhibitors of CTPS1 or IMPDH2 induce RR assembly in various cancer cell lines within 15 min to hours. Since glutamine is an essential amide nitrogen donor in these nucleotide biosynthetic pathways, glutamine deprivation was examined to determine whether it leads to RR formation. HeLa cells cultured in normal conditions did not show RR, but after culturing in media lacking glutamine, short rods (<2 μm) assembled after 24 h, and longer rods (>5 μm) formed after 48 h. Upon supplementation with glutamine or guanosine, these RR underwent almost complete disassembly within 15 min. Inhibition of glutamine synthetase with methionine sulfoximine also increased RR assembly in cells deprived of glutamine. Taken together, our data support the hypothesis that CTP/GTP biosynthetic enzymes polymerize to form RR in response to a decreased intracellular level of glutamine. We speculate that rod and ring formation is an adaptive metabolic response linked to disruption of glutamine homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RR:

Rods and rings

CTPS:

Cytidine triphosphate synthetase

IMPDH:

Inosine monophosphate dehydrogenase

DON:

6-Diazo-5-oxo-l-norleucine

CTP:

Cytidine triphosphate

GMP:

Guanine monophosphate

MPA:

Mycophenolic acid

FBS:

Fetal bovine serum

GTP:

Guanosine triphosphate

UTP:

Uridine triphosphate

mRNA:

Messenger RNA

References

  1. Carcamo WC, Satoh M, Kasahara H, Terada N, Hamazaki T, Chan JY, Yao B, Tamayo S, Covini G, von Muhlen CA, Chan EK (2011) Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6(12):e29690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Covini G, Carcamo WC, Bredi E, von Muhlen CA, Colombo M, Chan EKL (2012) Cytoplasmic rods and rings autoantibodies developed during PEGylated interferon and ribavirin therapy in patients with chronic hepatitis C. Antivir Ther 17(5):805–811

    Article  CAS  PubMed  Google Scholar 

  3. Chen K, Zhang J, Tastan OY, Deussen ZA, Siswick MY, Liu JL (2011) Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J Genet Genomics 38(9):391–402

    Article  CAS  PubMed  Google Scholar 

  4. Liu JL (2010) Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genomics 37(5):281–296

    Article  CAS  PubMed  Google Scholar 

  5. Liu JL (2011) The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation. BioEssays 33(3):159–164

    Article  CAS  PubMed  Google Scholar 

  6. Seelig HP, Appelhans H, Bauer O, Bluthner M, Hartung K, Schranz P, Schultze D, Seelig CA, Volkmann M (2011) Autoantibodies against inosine-5′-monophosphate dehydrogenase 2—characteristics and prevalence in patients with HCV-infection. Clin Lab 57(9–10):753–765

    CAS  PubMed  Google Scholar 

  7. Ji Y, Gu J, Makhov AM, Griffith JD, Mitchell BS (2006) Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic acid by GTP. J Biol Chem 281(1):206–212

    Article  CAS  PubMed  Google Scholar 

  8. Gunter JH, Thomas EC, Lengefeld N, Kruger SJ, Worton L, Gardiner EM, Jones A, Barnett NL, Whitehead JP (2008) Characterisation of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int J Biochem Cell Biol 40(9):1716–1728

    Article  CAS  PubMed  Google Scholar 

  9. Goto M, Omi R, Nakagawa N, Miyahara I, Hirotsu K (2004) Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites. Structure 12(8):1413–1423

    Article  CAS  PubMed  Google Scholar 

  10. Long CW, Pardee AB (1967) Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J Biol Chem 242(20):4715–4721

    CAS  PubMed  Google Scholar 

  11. Endrizzi JA, Kim H, Anderson PM, Baldwin EP (2005) Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 44(41):13491–13499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Willemoes M, Sigurskjold BW (2002) Steady-state kinetics of the glutaminase reaction of CTP synthase from Lactococcus lactis. The role of the allosteric activator GTP incoupling between glutamine hydrolysis and CTP synthesis. Eur J Biochem 269(19):4772–4779

    Article  CAS  PubMed  Google Scholar 

  13. Weber G (1983) Enzymes of purine metabolism in cancer. Clin Biochem 16(1):57–63

    Article  CAS  PubMed  Google Scholar 

  14. Weber G, Prajda N, Abonyi M, Look KY, Tricot G (1996) Tiazofurin: molecular and clinical action. Anticancer Res 16(6A):3313–3322

    CAS  PubMed  Google Scholar 

  15. Franklin TJ, Edwards G, Hedge P (1994) Inosine 5′-monophosphate dehydrogenase as a chemotherapeutic target. Adv Exp Med Biol 370:155–160

    Article  CAS  PubMed  Google Scholar 

  16. Nair V, Shu Q (2007) Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery. Antivir Chem Chemother 18(5):245–258

    CAS  PubMed  Google Scholar 

  17. Purich DL (1998) Advances in the enzymology of glutamine synthesis. Adv Enzymol Relat Areas Mol Biol 72:9–42

    CAS  PubMed  Google Scholar 

  18. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204(2):392–401

    Article  CAS  PubMed  Google Scholar 

  19. Engstrom W, Zetterberg A (1984) The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J Cell Physiol 120(2):233–241

    Article  CAS  PubMed  Google Scholar 

  20. Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21(1):1–9

    Article  CAS  PubMed  Google Scholar 

  21. Carcamo WC, Ceribelli A, Calise SJ, Krueger C, Liu C, Daves M, Villalta D, Bizzaro N, Satoh M, Chan EKL (2013) Differential reactivity to IMPDH2 by anti-rods/rings autoantibodies and unresponsiveness to PEGylated interferon-alpha/ribavirin therapy in US and Italian HCV patients. J Clin Immunol 33(2):420–426

    Article  CAS  PubMed  Google Scholar 

  22. Keppeke GD, Nunes E, Ferraz ML, Silva EA, Granato C, Chan EKL, Andrade LE (2012) Longitudinal study of a human drug-induced model of autoantibody to cytoplasmic rods/rings following HCV therapy with ribavirin and interferon-alpha. PLoS One 7(9):e45392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Probst C, Radzimski C, Blocker IM, Teegen B, Bogdanos DP, Stocker W, Komorowski L (2013) Development of a recombinant cell-based indirect immunofluorescence assay (RC-IFA) for the determination of autoantibodies against “rings and rods”-associated inosine-5′-monophosphate dehydrogenase 2 in viral hepatitis C. Clin Chim Acta 418(3):91–96

    Article  CAS  PubMed  Google Scholar 

  24. Stinton LM, Myers RP, Coffin CS, Fritzler MJ (2013) Clinical associations and potential novel antigenic targets of autoantibodies directed against rods and rings in chronic hepatitis C infection. BMC Gastroenterol 13:50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Carcamo WC, Yao B, Satoh M, Reeves WH, Liu C, Covini G, von Muhlen CA, Chan EKL (2009) Cytoplasmic rings/rods as autoimmune targets of emerging human autoantibodies associated with HCV virus infection and interferon therapy. In: Conrad K, Chan EKL, Fritzler MJ, Humbel RL, von Landenberg P, Shoenfeld Y (eds) From pathogenesis to therapy of autoimmune diseases, vol 6., Autoantigens, autoantibodies and autoimmunity. Pabst Science Publishers, Lengerich, pp 127–134

    Google Scholar 

  26. Fritzler MJ, Hamel JC, Ochs RL, Chan EKL (1993) Molecular characterization of two human autoantigens: unique cDNAs encoding 95- and 160-kD proteins of a putative family in the Golgi complex. J Exp Med 178(1):49–62

    Article  CAS  PubMed  Google Scholar 

  27. Jakymiw A, Ikeda K, Fritzler MJ, Reeves WH, Satoh M, Chan EKL (2006) Autoimmune targeting of key components of RNA interference. Arthritis Res Ther 8(4):R87

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lian S, Fritzler MJ, Katz J, Hamazaki T, Terada N, Satoh M, Chan EKL (2007) Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies. Mol Biol Cell 18(9):3375–3387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hofer A, Steverding D, Chabes A, Brun R, Thelander L (2001) Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc Natl Acad Sci USA 98(11):6412–6416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC (2005) Glutamine-dependent changes in gene expression and protein activity. Cell Biochem Funct 23(2):77–84

    Article  CAS  PubMed  Google Scholar 

  31. Geisbuhler TP, Rovetto MJ (1991) Guanosine metabolism in adult rat cardiac myocytes: ribose-enhanced GTP synthesis from extracellular guanosine. Pflug Arch 419(2):160–165

    Article  CAS  Google Scholar 

  32. Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253–279

    Article  CAS  PubMed  Google Scholar 

  33. Noree C, Sato BK, Broyer RM, Wilhelm JE (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190(4):541–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rapaport E, Christopher CW, Svihovec SK, Ullrey D, Kalckar HM (1979) Selective high metabolic lability of uridine, guanosine and cytosine triphosphates in response to glucose deprivation and refeeding of untransformed and polyoma virus-transformed hamster fibroblasts. J Cell Physiol 101(2):229–235

    Article  CAS  PubMed  Google Scholar 

  35. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Boza JJ, Moennoz D, Bournot CE, Blum S, Zbinden I, Finot PA, Ballevre O (2000) Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells. Eur J Nutr 39(1):38–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Thuy Nguyen and Dania Saleem for their technical assistance with ribonucleoside treatment and time-point analysis of RR disassembly by glutamine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward K. L. Chan.

Additional information

S. J. Calise and W. C. Carcamo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 382 kb)

Supplementary material 2 (PDF 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calise, S.J., Carcamo, W.C., Krueger, C. et al. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell. Mol. Life Sci. 71, 2963–2973 (2014). https://doi.org/10.1007/s00018-014-1567-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1567-6

Keywords

Navigation