Skip to main content

Advertisement

Log in

Neuraminidase-producing oral mitis group streptococci potentially contribute to influenza viral infection and reduction in antiviral efficacy of zanamivir

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Influenza is a serious respiratory disease among immunocompromised individuals, such as the elderly, and its prevention is an urgent social issue. Influenza viruses rely on neuraminidase (NA) activity to release progeny viruses from infected cells and spreading the infection. NA is, therefore, an important target of anti-influenza drugs. A causal relationship between bacteria and influenza virus infection has not yet been established, however, a positive correlation between them has been reported. Thus, in this study, we examined the biological effects of oral mitis group streptococci, which are predominant constituents of human oral florae, on the release of influenza viruses. Among them, Streptococcus oralis ATCC 10557 and Streptococcus mitis ATCC 6249 were found to exhibit NA activity and their culture supernatants promoted the release of influenza virus and cell-to-cell spread of the infection. In addition, culture supernatants of these NA-producing oral bacteria increased viral M1 protein expression levels and cellular ERK activation. These effects were not observed with culture supernatants of Streptococcus sanguinis ATCC 10556 which lacks the ability to produce NA. Although the NA inhibitor zanamivir suppressed the release of progeny viruses from the infected cells, the viral release was restored upon the addition of culture supernatants of NA-producing S. oralis ATCC 10557 or S. mitis ATCC 6249. These findings suggest that an increase in the number of NA-producing oral bacteria could elevate the risk of and exacerbate the influenza infection, hampering the efficacy of viral NA inhibitor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almond MH, McAuley DF, Wise MP, Griffiths MJ (2012) Influenza-related pneumonia. Clin Med 12:67–70

    PubMed  Google Scholar 

  2. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, Bandaranayake D, Breiman RF, Brooks WA, Buchy P, Feikin DR, Fowler KB, Gordon A, Hien NT, Horby P, Huang QS, Katz MA, Krishnan A, Lal R, Montgomery JM, Molbak K, Pebody R, Presanis AM, Razuri H, Steens A, Tinoco YO, Wallinga J, Yu H, Vong S, Bresee J, Widdowson MA (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 12:687–695. doi:10.1016/S1473-3099(12)70121-4

    Article  PubMed  Google Scholar 

  3. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Luscher-Mattli M (2000) Influenza chemotherapy: a review of the present state of art and of new drugs in development. Arch Virol 145:2233–2248

    Article  CAS  PubMed  Google Scholar 

  5. Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98:174–185. doi:10.1016/j.antiviral.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  6. Layne SP, Beugelsdijk TJ, Patel CK, Taubenberger JK, Cox NJ, Gust ID, Hay AJ, Tashiro M, Lavanchy D (2001) A global lab against influenza. Science 293:1729. doi:10.1126/science.293.5536.1729

    Article  CAS  PubMed  Google Scholar 

  7. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19:571–582. doi:10.1128/CMR.00058-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Taubenberger JK, Reid AH, Fanning TG (2000) The 1918 influenza virus: a killer comes into view. Virology 274:241–245. doi:10.1006/viro.2000.0495

    Article  CAS  PubMed  Google Scholar 

  9. Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, Vugia D, Harriman K, Matyas B, Glaser CA, Samuel MC, Rosenberg J, Talarico J, Hatch D, California Pandemic Working G (2009) Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA 302:1896–1902. doi:10.1001/jama.2009.1583

    Article  CAS  PubMed  Google Scholar 

  10. Dhanoa A, Fang NC, Hassan SS, Kaniappan P, Rajasekaram G (2011) Epidemiology and clinical characteristics of hospitalized patients with pandemic influenza A (H1N1) 2009 infections: the effects of bacterial co-infection. Virol J 8:501. doi:10.1186/1743-422X-8-501

    Article  PubMed Central  PubMed  Google Scholar 

  11. Tashiro M, Ciborowski P, Reinacher M, Pulverer G, Klenk HD, Rott R (1987) Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 157:421–430

    Article  CAS  PubMed  Google Scholar 

  12. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437. doi:10.1146/annurev.micro.54.1.413

    Article  CAS  PubMed  Google Scholar 

  13. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42:80–87. doi:10.1111/j.1600-0757.2006.00174.x

    Article  PubMed  Google Scholar 

  14. Gendron R, Grenier D, Maheu-Robert L (2000) The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect 2:897–906

    Article  CAS  PubMed  Google Scholar 

  15. Azarpazhooh A, Leake JL (2006) Systematic review of the association between respiratory diseases and oral health. J Periodontol 77:1465–1482. doi:10.1902/jop.2006.060010

    Article  PubMed  Google Scholar 

  16. Pizzo G, Guiglia R, Lo Russo L, Campisi G (2010) Dentistry and internal medicine: from the focal infection theory to the periodontal medicine concept. Eur J Intern Med 21:496–502. doi:10.1016/j.ejim.2010.07.011

    Article  PubMed  Google Scholar 

  17. Imai K, Ochiai K, Okamoto T (2009) Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification. J Immunol 182:3688–3695. doi:10.4049/jimmunol.0802906

    Article  CAS  PubMed  Google Scholar 

  18. Imai K, Inoue H, Tamura M, Cueno ME, Inoue H, Takeichi O, Kusama K, Saito I, Ochiai K (2012) The periodontal pathogen Porphyromonas gingivalis induces the Epstein–Barr virus lytic switch transactivator ZEBRA by histone modification. Biochimie 94:839–846. doi:10.1016/j.biochi.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Imai K, Yamada K, Tamura M, Ochiai K, Okamoto T (2012) Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria. Cell Mol Life Sci 69:2583–2592. doi:10.1007/s00018-012-0936-2

    Article  CAS  PubMed  Google Scholar 

  20. Bronstein-Sitton N, Cohen-Daniel L, Vaknin I, Ezernitchi AV, Leshem B, Halabi A, Houri-Hadad Y, Greenbaum E, Zakay-Rones Z, Shapira L, Baniyash M (2003) Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol 4:957–964. doi:10.1038/ni975

    Article  CAS  PubMed  Google Scholar 

  21. Kuroda M, Katano H, Nakajima N, Tobiume M, Ainai A, Sekizuka T, Hasegawa H, Tashiro M, Sasaki Y, Arakawa Y, Hata S, Watanabe M, Sata T (2010) Characterization of quasispecies of pandemic 2009 influenza A virus (A/H1N1/2009) by de novo sequencing using a next-generation DNA sequencer. PLoS One 5:e10256. doi:10.1371/journal.pone.0010256

    Article  PubMed Central  PubMed  Google Scholar 

  22. Abe S, Ishihara K, Adachi M, Sasaki H, Tanaka K, Okuda K (2006) Professional oral care reduces influenza infection in elderly. Arch Gerontol Geriatr 43:157–164. doi:10.1016/j.archger.2005.10.004

    Article  PubMed  Google Scholar 

  23. Rogers R, Newbrun E, Tatevossian A (1979) Neuraminidase activity in human dental plaque fluid. Arch Oral Biol 24:703–705

    Article  CAS  PubMed  Google Scholar 

  24. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13. doi:10.1111/j.1600-0722.2004.00180.x

    Article  CAS  PubMed  Google Scholar 

  25. Takao A, Nagamune H, Maeda N (2010) Sialidase of Streptococcus intermedius: a putative virulence factor modifying sugar chains. Microbiol Immunol 54:584–595. doi:10.1111/j.1348-0421.2010.00257.x

    CAS  PubMed  Google Scholar 

  26. Gopinath SC, Awazu K, Fujimaki M, Shimizu K (2013) Evaluation of Anti-A/Udorn/307/1972 antibody specificity to influenza A/H3N2 viruses using an evanescent-field coupled waveguide-mode sensor. PLoS One 8:e81396. doi:10.1371/journal.pone.0081396

    Article  PubMed Central  PubMed  Google Scholar 

  27. Shimizu K, Mukaigawa J, Oguro M, Ono Y, Nakajima K, Kida H (1985) Inhibition of transcriptase activity of influenza A virus in vitro by anti-haemagglutinin antibodies. Vaccine 3:207–210

    Article  CAS  PubMed  Google Scholar 

  28. Gorai T, Goto H, Noda T, Watanabe T, Kozuka-Hata H, Oyama M, Takano R, Neumann G, Watanabe S, Kawaoka Y (2012) F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding. Proc Natl Acad Sci USA 109:4615–4620. doi:10.1073/pnas.1114728109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ehrhardt C, Seyer R, Hrincius ER, Eierhoff T, Wolff T, Ludwig S (2010) Interplay between influenza A virus and the innate immune signaling. Microbes Infect 12:81–87. doi:10.1016/j.micinf.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  30. Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR, Ludwig S (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3:301–305. doi:10.1038/35060098

    Article  CAS  PubMed  Google Scholar 

  31. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732. doi:10.1128/JCM.43.11.5721-5732.2005

    Article  PubMed Central  PubMed  Google Scholar 

  32. Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410

    Article  CAS  PubMed  Google Scholar 

  33. Shibata S, Yamamoto-Goshima F, Maeno K, Hanaichi T, Fujita Y, Nakajima K, Imai M, Komatsu T, Sugiura S (1993) Characterization of a temperature-sensitive influenza B virus mutant defective in neuraminidase. J Virol 67:3264–3273

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Inoue E, Ieko M, Takahashi N, Osawa Y, Okazaki K (2013) An NA-deficient 2009 pandemic H1N1 influenza virus mutant can efficiently replicate in cultured cells. Arch Virol. doi:10.1007/s00705-013-1887-0

    PubMed  Google Scholar 

  35. Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, Butler EN, Wallis TR, Klimov AI, Gubareva LV (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52:3284–3292. doi:10.1128/AAC.00555-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Centers for Disease C, Prevention (2009) Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infection in two summer campers receiving prophylaxis—North Carolina, 2009. MMWR Morb Mortal Wkly Rep 58:969–972

    Google Scholar 

  37. Nishikawa T, Shimizu K, Tanaka T, Kuroda K, Takayama T, Yamamoto T, Hanada N, Hamada Y (2012) Bacterial neuraminidase rescues influenza virus replication from inhibition by a neuraminidase inhibitor. PLoS One 7:e45371. doi:10.1371/journal.pone.0045371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mendel DB, Tai CY, Escarpe PA, Li W, Sidwell RW, Huffman JH, Sweet C, Jakeman KJ, Merson J, Lacy SA, Lew W, Williams MA, Zhang L, Chen MS, Bischofberger N, Kim CU (1998) Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob Agents Chemother 42:640–646

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Scannapieco FA (1999) Role of oral bacteria in respiratory infection. J Periodontol 70:793–802. doi:10.1902/jop.1999.70.7.793

    Article  CAS  PubMed  Google Scholar 

  40. Russell SL, Boylan RJ, Kaslick RS, Scannapieco FA, Katz RV (1999) Respiratory pathogen colonization of the dental plaque of institutionalized elders. Spec Care Dentist 19:128–134

    Article  CAS  PubMed  Google Scholar 

  41. Adachi M, Ishihara K, Abe S, Okuda K (2007) Professional oral health care by dental hygienists reduced respiratory infections in elderly persons requiring nursing care. Int J Dent Hyg 5:69–74. doi:10.1111/j.1601-5037.2007.00233.x

    Article  CAS  PubMed  Google Scholar 

  42. Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A (2013) Microbial geography of the oral cavity. J Dent Res 92:616–621. doi:10.1177/0022034513488119

    Article  CAS  PubMed  Google Scholar 

  43. Frandsen EV, Pedrazzoli V, Kilian M (1991) Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129–133

    Article  CAS  PubMed  Google Scholar 

  44. Ishikawa A, Yoneyama T, Hirota K, Miyake Y, Miyatake K (2008) Professional oral health care reduces the number of oropharyngeal bacteria. J Dent Res 87:594–598

    Article  CAS  PubMed  Google Scholar 

  45. Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362:1733–1745. doi:10.1016/S0140-6736(03)14854-4

    Article  CAS  PubMed  Google Scholar 

  46. Hedlund M, Larson JL, Fang F (2010) Antiviral strategies for pandemic and seasonal influenza. Viruses 2:1766–1781. doi:10.3390/v2081766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Michiels B, Govaerts F, Remmen R, Vermeire E, Coenen S (2011) A systematic review of the evidence on the effectiveness and risks of inactivated influenza vaccines in different target groups. Vaccine 29:9159–9170. doi:10.1016/j.vaccine.2011.08.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; a grant from the Dental Research Center, Nihon University School of Dentistry, Tokyo; Nihon University President’s Grant for Specified Multidisciplinary Research; and the Strategic Research Base Development Program for Private Universities (S1001024) and Japan Initiative for Global Research Network on Infectious Diseases from the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Imai or Kuniyasu Ochiai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamio, N., Imai, K., Shimizu, K. et al. Neuraminidase-producing oral mitis group streptococci potentially contribute to influenza viral infection and reduction in antiviral efficacy of zanamivir. Cell. Mol. Life Sci. 72, 357–366 (2015). https://doi.org/10.1007/s00018-014-1669-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1669-1

Keywords

Navigation