Skip to main content

Advertisement

Log in

The impact of HIV-1 on neurogenesis: implications for HAND

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

HIV-1 infection, in addition to its destructive effects on the immune system, plays a role in the development of neurocognitive deficits. Indeed up to 50 % of long-term HIV infected patients suffer from HIV-associated neurocognitive disorders (HAND). These deficits have been well characterized and defined clinically according to a number of cognitive parameters. HAND is often accompanied by atrophy of the brain including inhibition of neurogenesis, especially in the hippocampus.  Many mechanisms have been proposed as contributing factors to HAND including induction of oxidative stress in the central nervous system (CNS), chronic microglial-mediated neuroinflammation, amyloid-beta (Aβ) deposition, hyperphosphorylated tau protein, and toxic effects of combination antiretroviral therapy (cART). In these review we focus solely on recent experimental evidence suggesting that disturbance by HIV-1 results in impairment of neurogenesis as one contributing factor to HAND. Impaired neurogenesis has been linked to cognitive deficits and other neurodegenerative disorders. This article will highlight recently identified pathological mechanisms which potentially contribute to the development of impaired neurogenesis by HIV-1 or HIV-1-associated proteins from both animal and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lima VD et al (2007) Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 21(6):685–692

    Article  PubMed  Google Scholar 

  2. Quashie PK, Mesplede T, Wainberg MA (2013) HIV drug resistance and the advent of integrase inhibitors. Curr Infect Dis Rep 15(1):85–100

    Article  PubMed  Google Scholar 

  3. Lieberman-Blum SS, Fung HB, Bandres JC (2008) Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 30(7):1228–1250

    Article  PubMed  CAS  Google Scholar 

  4. Del Guerra FB et al (2013) Human immunodeficiency virus-associated depression: contributions of immuno-inflammatory, monoaminergic, neurodegenerative, and neurotrophic pathways. J Neurovirol 19(4):314–327

    Article  PubMed  CAS  Google Scholar 

  5. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27(1):86–92

    Article  PubMed  Google Scholar 

  6. Adle-Biassette H et al (1995) Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21(3):218–227

    Article  PubMed  CAS  Google Scholar 

  7. Okamoto S et al (2007) HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell 1(2):230–236

    Article  PubMed  CAS  Google Scholar 

  8. Thomas S, Mayer L, Sperber K (2009) Mitochondria influence Fas expression in gp120-induced apoptosis of neuronal cells. Int J Neurosci 119(2):157–165

    Article  PubMed  CAS  Google Scholar 

  9. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154(2):276–288

    Article  PubMed  CAS  Google Scholar 

  10. Vissers M, Stelma FF, Koopmans PP (2010) Could differential virological characteristics account for ongoing viral replication and insidious damage of the brain during HIV 1 infection of the central nervous system? J Clin Virol 49(4):231–238

    Article  PubMed  CAS  Google Scholar 

  11. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-gamma inhibition. Trends Pharmacol Sci 32(12):715–725

    Article  PubMed  CAS  Google Scholar 

  12. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Mitochondrial toxicity in HAART: an overview of in vitro evidence. Curr Pharm Des 17(20):2130–2144

    Article  PubMed  CAS  Google Scholar 

  13. Apostolova N et al (2011) Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology 54(3):1009–1019

    Article  PubMed  CAS  Google Scholar 

  14. Zhou L, Saksena NK (2013) HIV associated neurocognitive disorders. Infect Dis Rep 5(Suppl 1):e8

    PubMed  PubMed Central  Google Scholar 

  15. Blas-Garcia A, Apostolova N, Esplugues JV (2011) Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: clinical implications. Curr Pharm Des 17(36):4076–4086

    Article  PubMed  CAS  Google Scholar 

  16. Blas-Garcia A, Esplugues JV, Apostolova N (2011) Twenty years of HIV-1 non-nucleoside reverse transcriptase inhibitors: time to reevaluate their toxicity. Curr Med Chem 18(14):2186–2195

    Article  PubMed  CAS  Google Scholar 

  17. Brown LA et al (2014) Efavirenz promotes beta-secretase expression and increased Abeta1-40,42 via oxidative stress and reduced microglial phagocytosis: implications for HIV associated neurocognitive disorders (HAND). PLoS One 9(4):e95500

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giunta B et al (2011) Antiretroviral medications disrupt microglial phagocytosis of beta-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4(1):23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Manda KR et al (2011) Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood-brain barrier endothelial cells. Free Radic Biol Med 50(7):801–810

    Article  PubMed  CAS  Google Scholar 

  20. Akay C et al (2014) Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol 20(1):39–53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Alfahad TB, Nath A (2013) Update on HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep 13(10):387

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rosca EC et al (2012) HIV-associated neurocognitive disorders: a historical review. Neurologist 18(2):64–67

    Article  PubMed  Google Scholar 

  23. Snider WD et al (1983) Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol 14(4):403–418

    Article  PubMed  CAS  Google Scholar 

  24. Navia BA, Price RW (1987) The acquired immunodeficiency syndrome dementia complex as the presenting or sole manifestation of human immunodeficiency virus infection. Arch Neurol 44(1):65–69

    Article  PubMed  CAS  Google Scholar 

  25. (1991) Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41(6): 778–785

  26. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  PubMed  CAS  Google Scholar 

  27. Lacar B et al (2014) Increasing the resolution of the adult neurogenesis picture. F1000 Prime Rep 6:8

    Google Scholar 

  28. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80(3):588–601

    Article  PubMed  CAS  Google Scholar 

  29. Green HF, Nolan YM (2014) Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 40C:20–34

    Article  Google Scholar 

  30. Frisoni GB et al (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla. Brain 131(Pt 12):3266–3276

    Article  PubMed  Google Scholar 

  31. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    Article  PubMed  CAS  Google Scholar 

  32. Schinder AF, Gage FH (2004) A hypothesis about the role of adult neurogenesis in hippocampal function. Physiology (Bethesda) 19:253–261

    Article  Google Scholar 

  33. Peng H et al (2008) HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56(8):903–916

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tamamis P, Floudas CA (2013) Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys J 105(6):1502–1514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Bagri A et al (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129(18):4249–4260

    PubMed  CAS  Google Scholar 

  36. Kaul M (2008) HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci 13:2484–2494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Lawrence DM et al (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78(14):7319–7328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Schwartz L et al (2007) Evidence of human immunodeficiency virus type 1 infection of nestin-positive neural progenitors in archival pediatric brain tissue. J Neurovirol 13(3):274–283

    Article  PubMed  Google Scholar 

  39. Krathwohl MD, Kaiser JL (2004) HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190(2):216–226

    Article  PubMed  CAS  Google Scholar 

  40. Mishra M et al (2010) Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. J Neurovirol 16(5):355–367

    Article  PubMed  CAS  Google Scholar 

  41. Lee MH et al (2011) Rescue of adult hippocampal neurogenesis in a mouse model of HIV neurologic disease. Neurobiol Dis 41(3):678–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Das S, Basu A (2011) Viral infection and neural stem/progenitor cell’s fate: implications in brain development and neurological disorders. Neurochem Int 59(3):357–366

    Article  PubMed  CAS  Google Scholar 

  43. Peng H et al (2011) HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One 6(5):e19439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Yao H et al (2012) Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels. J Neurosci 32(29):9835–9847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Gorantla S et al (2007) Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. J Immunol 179(7):4345–4356

    Article  PubMed  CAS  Google Scholar 

  46. Geffin R et al (2013) Apolipoprotein E-dependent differences in innate immune responses of maturing human neuroepithelial progenitor cells exposed to HIV-1. J Neuroimmune Pharmacol 8(4):1010–1026

    Article  PubMed  Google Scholar 

  47. Mocchetti I et al (2014) Implementing neuronal plasticity in neuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors. J Neuroimmune Pharmacol 9(2):80–91

    Article  PubMed  Google Scholar 

  48. Lee MH et al (2013) Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol 19(5):418–431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Yang L et al (2013) Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis 4:e960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Chao J et al (2014) Platelet-derived growth factor-BB restores HIV Tat -mediated impairment of neurogenesis: role of GSK-3beta/beta-catenin. J Neuroimmune Pharmacol 9(2):259–268

    Article  PubMed  Google Scholar 

  51. Avraham HK et al (2014) Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme. Br J Pharmacol. doi:10.1111/bph.12657

Download references

Acknowledgments

This work was supported by the NIH/NIMH (R01MH098737 [B.G.]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Giunta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrell, D., Giunta, B. The impact of HIV-1 on neurogenesis: implications for HAND. Cell. Mol. Life Sci. 71, 4387–4392 (2014). https://doi.org/10.1007/s00018-014-1702-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1702-4

Keywords

Navigation