Skip to main content

Advertisement

Log in

Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Krisher RL (2013) Oocyte physiology and development in domestic animals, 1st edn. Wiley-Blackwell, New York

    Google Scholar 

  2. Jagarlamudi K, Rajkovic A (2012) Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 356(1–2):31–39. doi:10.1016/j.mce.2011.07.049

    CAS  PubMed  Google Scholar 

  3. Sanchez F, Smitz J (2012) Molecular control of oogenesis. Biochim Biophys Acta 1822(12):1896–1912. doi:10.1016/j.bbadis.2012.05.013

    CAS  PubMed  Google Scholar 

  4. Polanski Z (2013) Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes. Reprod Fertil Dev 25(3):472–483. doi:10.1071/RD12145

    PubMed  Google Scholar 

  5. Dumont J, Desai A (2012) Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol 22(5):241–249. doi:10.1016/j.tcb.2012.02.007

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends in genetics: TIG 24(2):86–93. doi:10.1016/j.tig.2007.11.010

    CAS  PubMed  Google Scholar 

  7. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8(4):485–489

    CAS  PubMed  Google Scholar 

  8. Krisher RL (2004) The effect of oocyte quality on development. J Anim Sci 82:E14–E23

    PubMed  Google Scholar 

  9. Peters H, McNatty KP (1980) The ovary. Granada, New York

    Google Scholar 

  10. Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11(5):797–813. doi:10.1016/j.mito.2010.09.012

    PubMed  Google Scholar 

  11. Tatone C, Heizenrieder T, Di Emidio G, Treffon P, Amicarelli F, Seidel T, Eichenlaub-Ritter U (2011) Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum Reprod 26(7):1843–1859. doi:10.1093/humrep/der140

    CAS  PubMed  Google Scholar 

  12. Johnson MT, Freeman EA, Gardner DK, Hunt PA (2007) Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod 77(1):2–8. doi:10.1095/biolreprod.106.059899

    CAS  PubMed  Google Scholar 

  13. Zuelke KA, Jones DP, Perreault SD (1997) Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol Reprod 57(6):1413–1419

    CAS  PubMed  Google Scholar 

  14. Eichenlaub-Ritter U, Wieczorek M, Luke S, Seidel T (2011) Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11(5):783–796. doi:10.1016/j.mito.2010.08.011

    CAS  PubMed  Google Scholar 

  15. Buccione R, Schroeder AC, Eppig JJ (1990) Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 43(4):543–547

    CAS  PubMed  Google Scholar 

  16. Sugiura K, Pendola FL, Eppig JJ (2005) Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 279(1):20–30. doi:10.1016/j.ydbio.2004.11.027

    CAS  PubMed  Google Scholar 

  17. Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14(3):141–152. doi:10.1038/nrm3531

    CAS  PubMed  Google Scholar 

  18. Leese HJ, Barton AM (1985) Production of pyruvate by isolated mouse cumulus cells. J Exp Zool 234(2):231–236. doi:10.1002/jez.1402340208

    CAS  PubMed  Google Scholar 

  19. Sugiura K, Eppig JJ, Society for Reproductive Biology Founders’ Lecture 2005 (2005) Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev 17(7):667–674

    CAS  PubMed  Google Scholar 

  20. Su YQ, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27(1):32–42. doi:10.1055/s-0028-1108008

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grindler NM, Moley KH (2013) Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod 19(8):486–494. doi:10.1093/molehr/gat026

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Collado-Fernandez E, Picton HM, Dumollard R (2012) Metabolism throughout follicle and oocyte development in mammals. Int J Dev Biol 56(10–12):799–808. doi:10.1387/ijdb.120140ec

    CAS  PubMed  Google Scholar 

  23. Hernandez-Medrano JH, Campbell BK, Webb R (2012) Nutritional influences on folliculogenesis. Reprod Domest Anim 47(Suppl 4):274–282. doi:10.1111/j.1439-0531.2012.02086.x

    PubMed  Google Scholar 

  24. Gosden R, Lee B (2010) Portrait of an oocyte: our obscure origin. J Clin Investig 120(4):973–983. doi:10.1172/JCI41294

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296(5576):2178–2180. doi:10.1126/science.1071965

    CAS  PubMed  Google Scholar 

  26. Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14(2):159–177. doi:10.1093/humupd/dmm040

    CAS  PubMed  Google Scholar 

  27. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1(1):63–72

    CAS  PubMed  Google Scholar 

  28. Kurus M, Karakaya C, Karalok MH, To G, Johnson J (2013) The control of oocyte survival by intrinsic and extrinsic factors. Adv Exp Med Biol 761:7–18. doi:10.1007/978-1-4614-8214-7_2

    PubMed  Google Scholar 

  29. Purcell SH, Moley KH (2009) Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol Metab 20(10):483–489. doi:10.1016/j.tem.2009.06.006

    CAS  PubMed  Google Scholar 

  30. Baltz JM, Zhou C (2012) Cell volume regulation in mammalian oocytes and preimplantation embryos. Mol Reprod Dev 79(12):821–831. doi:10.1002/mrd.22117

    CAS  PubMed  Google Scholar 

  31. Fragouli E, Lalioti MD, Wells D (2014) The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update 20(1):1–11. doi:10.1093/humupd/dmt044

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE (2007) A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci 98(1–2):72–96. doi:10.1016/j.anireprosci.2006.10.006

    CAS  PubMed  Google Scholar 

  33. Anckaert E, De Rycke M, Smitz J (2013) Culture of oocytes and risk of imprinting defects. Hum Reprod Update 19(1):52–66. doi:10.1093/humupd/dms042

    CAS  PubMed  Google Scholar 

  34. Van Hoeck V, Bols PE, Binelli M, Leroy JL (2014) Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: a possible pathway to subfertility? Anim Reprod Sci. doi:10.1016/j.anireprosci.2014.07.015

    PubMed  Google Scholar 

  35. Thompson JG (2006) The impact of nutrition of the cumulus oocyte complex and embryo on subsequent development in ruminants. J Reprod Dev 52(1):169–175

    CAS  PubMed  Google Scholar 

  36. Sutton-McDowall ML, Gilchrist RB, Thompson JG (2010) The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139(4):685–695. doi:10.1530/REP-09-0345

    CAS  PubMed  Google Scholar 

  37. Brinster RL, Harstad H (1977) Energy metabolism in primordial germ cells of the mouse. Exp Cell Res 109(1):111–117

    CAS  PubMed  Google Scholar 

  38. Jansen RP, de Boer K (1998) The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145(1–2):81–88

    CAS  PubMed  Google Scholar 

  39. Harris SE, Leese HJ, Gosden RG, Picton HM (2009) Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol Reprod Dev 76(3):231–238. doi:10.1002/mrd.20945

    CAS  PubMed  Google Scholar 

  40. Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58(2):560–567

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rieger D, Loskutoff NM (1994) Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro. J Reprod Fertil 100(1):257–262

    CAS  PubMed  Google Scholar 

  42. Saito T, Hiroi M, Kato T (1994) Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod 50(2):266–270

    CAS  PubMed  Google Scholar 

  43. Zuelke KA, Brackett BG (1992) Effects of luteinizing hormone on glucose metabolism in cumulus-enclosed bovine oocytes matured in vitro. Endocrinology 131(6):2690–2696. doi:10.1210/endo.131.6.1446610

    CAS  PubMed  Google Scholar 

  44. Downs SM, Mastropolo AM (1994) The participation of energy substrates in the control of meiotic maturation in murine oocytes. Dev Biol 162(1):154–168. doi:10.1006/dbio.1994.1075

    CAS  PubMed  Google Scholar 

  45. Eppig JJ (1976) Analysis of mouse oogenesis in vitro. Oocyte isolation and the utilization of exogenous energy sources by growing oocytes. The Journal of experimental zoology 198(3):375–382. doi:10.1002/jez.1401980311

    CAS  PubMed  Google Scholar 

  46. Fagbohun CF, Downs SM (1992) Requirement for glucose in ligand-stimulated meiotic maturation of cumulus cell-enclosed mouse oocytes. J Reprod Fertil 96(2):681–697

    CAS  PubMed  Google Scholar 

  47. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Herubel F, El Mouatassim S, Guerin P, Frydman R, Menezo Y (2002) Genetic expression of monocarboxylate transporters during human and murine oocyte maturation and early embryonic development. Zygote 10(2):175–181

    CAS  PubMed  Google Scholar 

  49. Songsasen N, Wesselowski S, Carpenter JW, Wildt DE (2012) The ability to achieve meiotic maturation in the dog oocyte is linked to glycolysis and glutamine oxidation. Mol Reprod Dev 79(3):186–196. doi:10.1002/mrd.22011

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brinster RL (1968) Hexokinase activity in the preimplantation mouse embryo. Enzymologia 34(5):304–308

    CAS  PubMed  Google Scholar 

  51. Brinster RL (1971) Oxidation of pyruvate and glucose by oocytes of the mouse and rhesus monkey. J Reprod Fertil 24(2):187–191

    CAS  PubMed  Google Scholar 

  52. Downs SM, Utecht AM (1999) Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 60(6):1446–1452

    CAS  PubMed  Google Scholar 

  53. Rushmer RA, Brinster RL (1973) Carbon dioxide production from pyruvate and glucose by bovine oocytes. Exp Cell Res 82(2):252–254

    CAS  PubMed  Google Scholar 

  54. Urner F, Sakkas D (1999) Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 60(4):973–978

    CAS  PubMed  Google Scholar 

  55. Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282(4):E974–E976. doi:10.1152/ajpendo.00407.2001

    CAS  PubMed  Google Scholar 

  56. Aghayan M, Rao LV, Smith RM, Jarett L, Charron MJ, Thorens B, Heyner S (1992) Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development 115(1):305–312

    CAS  PubMed  Google Scholar 

  57. Morita Y, Tsutsumi O, Hosoya I, Taketani Y, Oka Y, Kato T (1992) Expression and possible function of glucose transporter protein GLUT1 during preimplantation mouse development from oocytes to blastocysts. Biochem Biophys Res Commun 188(1):8–15

    CAS  PubMed  Google Scholar 

  58. Augustin R, Pocar P, Navarrete-Santos A, Wrenzycki C, Gandolfi F, Niemann H, Fischer B (2001) Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol Reprod Dev 60(3):370–376. doi:10.1002/mrd.1099

    CAS  PubMed  Google Scholar 

  59. Pisani LF, Antonini S, Pocar P, Ferrari S, Brevini TA, Rhind SM, Gandolfi F (2008) Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction 136(3):303–312. doi:10.1530/REP-07-0394

    CAS  PubMed  Google Scholar 

  60. Dan-Goor M, Sasson S, Davarashvili A, Almagor M (1997) Expression of glucose transporter and glucose uptake in human oocytes and preimplantation embryos. Hum Reprod 12(11):2508–2510

    CAS  PubMed  Google Scholar 

  61. Zheng P, Vassena R, Latham KE (2007) Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol Hum Reprod 13(6):361–371. doi:10.1093/molehr/gam014

    CAS  PubMed  Google Scholar 

  62. Purcell SH, Moley KH (2011) The impact of obesity on egg quality. J Assist Reprod Genet 28(6):517–524. doi:10.1007/s10815-011-9592-y

    PubMed  PubMed Central  Google Scholar 

  63. Wang Q, Chi MM, Schedl T, Moley KH (2012) An intercellular pathway for glucose transport into mouse oocytes. Am J Phys Endocrinol Metab 302(12):E1511–E1518. doi:10.1152/ajpendo.00016.2012

    CAS  Google Scholar 

  64. Chi MM, Manchester JK, Yang VC, Curato AD, Strickler RC, Lowry OH (1988) Contrast in levels of metabolic enzymes in human and mouse ova. Biol Reprod 39(2):295–307

    CAS  PubMed  Google Scholar 

  65. De Schepper GG, Van Noorden CJ, Koperdraad F (1985) A cytochemical method for measuring enzyme activity in individual preovulatory mouse oocytes. J Reprod Fertil 74(2):709–716

    PubMed  Google Scholar 

  66. Tsutsumi O, Satoh K, Taketani Y, Kato T (1992) Determination of enzyme activities of energy metabolism in the maturing rat oocyte. Mol Reprod Dev 33(3):333–337. doi:10.1002/mrd.1080330315

    CAS  PubMed  Google Scholar 

  67. Ferrandi B, Cremonesti F, Geiger R, Consiglio AL, Carnevali A, Porcelli F (1993) Quantitative cytochemical study of some enzymatic activities in preovulatory bovine oocytes after in vitro maturation. Acta Histochem 95(1):89–96. doi:10.1016/S0065-1281(11)80394-6

    CAS  PubMed  Google Scholar 

  68. Kelly A, West JD (2002) Survival and normal function of glycolysis-deficient mouse oocytes. Reproduction 124(4):469–473

    CAS  PubMed  Google Scholar 

  69. Pujol M, Lopez-Bejar M, Paramio MT (2004) Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61(4):735–744

    PubMed  Google Scholar 

  70. Alm H, Torner H, Lohrke B, Viergutz T, Ghoneim IM, Kanitz W (2005) Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 63(8):2194–2205. doi:10.1016/j.theriogenology.2004.09.050

    CAS  PubMed  Google Scholar 

  71. El Shourbagy SH, Spikings EC, Freitas M, St John JC (2006) Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131(2):233–245. doi:10.1530/rep.1.00551

    PubMed  Google Scholar 

  72. Pawlak P, Warzych E, Chabowska A, Lechniak D (2014) Differences in cytoplasmic maturation between the BCB + and control porcine oocytes do not justify application of the BCB test for a standard IVM protocol. J Reprod Dev 60(1):28–36

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Santos EC, Sato D, Lucia T, Iwata H (2013) Brilliant cresyl blue staining negatively affects mitochondrial functions in porcine oocytes. Zygote:1–8. doi:10.1017/S0967199413000610

  74. Loewenstein JE, Cohen AI (1964) Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J Embryol Exp Morphol 12:113–121

    CAS  PubMed  Google Scholar 

  75. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK (2000) Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 118(1):163–170

    CAS  PubMed  Google Scholar 

  76. Sturmey RG, Leese HJ (2003) Energy metabolism in pig oocytes and early embryos. Reproduction 126(2):197–204

    CAS  PubMed  Google Scholar 

  77. Ferguson EM, Leese HJ (1999) Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116(2):373–378

    CAS  PubMed  Google Scholar 

  78. Kim JY, Kinoshita M, Ohnishi M, Fukui Y (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122(1):131–138

    CAS  PubMed  Google Scholar 

  79. Homa ST, Racowsky C, McGaughey RW (1986) Lipid analysis of immature pig oocytes. J Reprod Fertil 77(2):425–434

    CAS  PubMed  Google Scholar 

  80. Yang X, Dunning KR, Wu LL, Hickey TE, Norman RJ, Russell DL, Liang X, Robker RL (2010) Identification of perilipin-2 as a lipid droplet protein regulated in oocytes during maturation. Reprod Fertil Dev 22(8):1262–1271. doi:10.1071/RD10091

    CAS  PubMed  Google Scholar 

  81. Guraya SS (1969) Histochemical study of lipids in the developing ovarian oocyte of the golden hamster (Mesocricetus auratus). Acta Anat 74(1):65–75

    CAS  PubMed  Google Scholar 

  82. Guraya SS (1975) Histochemical observations on the juxtanuclear complex of organelles in the hamster oocyte. Acta Anat 93(3):335–343

    CAS  PubMed  Google Scholar 

  83. Sturmey RG, O’Toole PJ, Leese HJ (2006) Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 132(6):829–837. doi:10.1530/REP-06-0073

    CAS  PubMed  Google Scholar 

  84. Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM (2011) Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 85(1):62–69. doi:10.1095/biolreprod.110.088815

    CAS  PubMed  Google Scholar 

  85. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559. doi:10.1194/jlr.R700014-JLR200

    CAS  PubMed  Google Scholar 

  86. Fleming WN, Saacke RG (1972) Fine structure of the bovine oocyte from the mature graafian follicle. J Reprod Fertil 29(2):203–213

    CAS  PubMed  Google Scholar 

  87. Van Praag D, Farber SJ (1983) Biosynthesis of cyclooxygenase and lipoxygenase metabolites of arachidonic acid by rabbit renal microsomes. Prostaglandins Leukot Med 12(1):29–47

    PubMed  Google Scholar 

  88. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. doi:10.1152/physrev.00015.2009

    CAS  PubMed  Google Scholar 

  89. Dunning KR, Russell DL, Robker RL (2014) Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction 148(1):R15–R27. doi:10.1530/REP-13-0251

    CAS  PubMed  Google Scholar 

  90. McKeegan PJ, Sturmey RG (2011) The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev 24(1):59–67. doi:10.1071/RD11907

    CAS  PubMed  Google Scholar 

  91. Ferguson EM, Leese HJ (2006) A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73(9):1195–1201. doi:10.1002/mrd.20494

    CAS  PubMed  Google Scholar 

  92. Downs SM, Mosey JL, Klinger J (2009) Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 76(9):844–853. doi:10.1002/mrd.21047

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83(6):909–918. doi:10.1095/biolreprod.110.084145

    CAS  PubMed  Google Scholar 

  94. Cetica P, Pintos L, Dalvit G, Beconi M (2002) Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124(5):675–681

    CAS  PubMed  Google Scholar 

  95. Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL (2011) Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol Reprod 85(3):548–555. doi:10.1095/biolreprod.110.090415

    CAS  PubMed  Google Scholar 

  96. Hashimoto S (2009) Application of in vitro maturation to assisted reproductive technology. J Reprod Dev 55(1):1–10

    CAS  PubMed  Google Scholar 

  97. Somfai T, Kaneda M, Akagi S, Watanabe S, Haraguchi S, Mizutani E, Dang-Nguyen TQ, Geshi M, Kikuchi K, Nagai T (2011) Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod Fertil Dev 23(7):912–920. doi:10.1071/RD10339

    CAS  PubMed  Google Scholar 

  98. Wu GQ, Jia BY, Li JJ, Fu XW, Zhou GB, Hou YP, Zhu SE (2011) L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 76(5):785–793. doi:10.1016/j.theriogenology.2011.04.011

    CAS  PubMed  Google Scholar 

  99. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL (2013) Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 88(5):111. doi:10.1095/biolreprod.113.108548

    PubMed  Google Scholar 

  100. Huang YH, Sauer K (2010) Lipid signaling in T-cell development and function. Cold Spring Harb Perspect Biol 2(11):a002428. doi:10.1101/cshperspect.a002428

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7(4):281–294. doi:10.1038/nrc2110

    CAS  PubMed  Google Scholar 

  102. Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49:459–487. doi:10.1146/annurev.bi.49.070180.002331

    CAS  PubMed  Google Scholar 

  103. Bell RM (1986) Protein kinase C activation by diacylglycerol second messengers. Cell 45(5):631–632

    CAS  PubMed  Google Scholar 

  104. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308(5961):693–698

    CAS  PubMed  Google Scholar 

  105. Wang QJ (2006) PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27(6):317–323. doi:10.1016/j.tips.2006.04.003

    CAS  PubMed  Google Scholar 

  106. Kalive M, Faust JJ, Koeneman BA, Capco DG (2010) Involvement of the PKC family in regulation of early development. Mol Reprod Dev 77(2):95–104. doi:10.1002/mrd.21112

    CAS  PubMed  Google Scholar 

  107. Yeboah D, Kalabis GM, Sun M, Ou RC, Matthews SG, Gibb W (2008) Expression and localisation of breast cancer resistance protein (BCRP) in human fetal membranes and decidua and the influence of labour at term. Reprod Fertil Dev 20(2):328–334

    CAS  PubMed  Google Scholar 

  108. Sun QY, Miao YL, Schatten H (2009) Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle 8(17):2741–2747

    CAS  PubMed  Google Scholar 

  109. Ghosh S, Strum JC, Bell RM (1997) Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J 11(1):45–50

    CAS  PubMed  Google Scholar 

  110. Strum JC, Swenson KI, Turner JE, Bell RM (1995) Ceramide triggers meiotic cell cycle progression in Xenopus oocytes. A potential mediator of progesterone-induced maturation. J Biol Chem 270(22):13541–13547

    CAS  PubMed  Google Scholar 

  111. Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340. doi:10.1146/annurev.nutr.25.051804.101917

    CAS  PubMed  Google Scholar 

  112. Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ, Flaws J, Wagner KU, Hennighausen L (2002) Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem 277(20):17830–17835. doi:10.1074/jbc.M200186200

    CAS  PubMed  Google Scholar 

  113. Al Darwich A, Perreau C, Petit MH, Papillier P, Dupont J, Guillaume D, Mermillod P, Guignot F (2010) Effect of PUFA on embryo cryoresistance, gene expression and AMPKalpha phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat 93(1–2):30–36. doi:10.1016/j.prostaglandins.2010.06.002

    CAS  PubMed  Google Scholar 

  114. Sutton ML, Gilchrist RB, Thompson JG (2003) Effects of in vivo and in vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 9(1):35–48

    CAS  PubMed  Google Scholar 

  115. Bae IH, Foote RH (1975) Utilization of glutamine for energy and protein synthesis by cultured rabbit follicular oocytes. Exp Cell Res 90(2):432–436

    CAS  PubMed  Google Scholar 

  116. Van Winkle LJ (2001) Amino acid transport regulation and early embryo development. Biol Reprod 64(1):1–12

    PubMed  Google Scholar 

  117. Pelland AM, Corbett HE, Baltz JM (2009) Amino Acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol Reprod 81(6):1041–1054. doi:10.1095/biolreprod.109.079046

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77

    CAS  PubMed  Google Scholar 

  119. Colonna R, Cecconi S, Buccione R, Mangia F (1983) Amino acid transport systems in growing mouse oocytes. Cell Biol Int Rep 7(12):1007–1015

    CAS  PubMed  Google Scholar 

  120. Haghighat N, Van Winkle LJ (1990) Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool 253(1):71–82. doi:10.1002/jez.1402530110

    CAS  PubMed  Google Scholar 

  121. Van Winkle LJ, Mann DF, Wasserlauf HG, Patel M (1992) Mediated Na(+)-independent transport of l-glutamate and l-cystine in 1- and 2-cell mouse conceptuses. Biochim Biophys Acta 1107(2):299–304

    PubMed  Google Scholar 

  122. Van Winkle LJ, Patel M, Wasserlauf HG, Dickinson HR, Campione AL (1994) Osmotic regulation of taurine transport via system beta and novel processes in mouse preimplantation conceptuses. Biochim Biophys Acta 1191(2):244–255

    PubMed  Google Scholar 

  123. Van Winkle LJ, Haghighat N, Campione AL, Gorman JM (1988) Glycine transport in mouse eggs and preimplantation conceptuses. Biochim Biophys Acta 941(2):241–256

    PubMed  Google Scholar 

  124. Van Winkle LJ, Campione AL, Gorman JM, Weimer BD (1990) Changes in the activities of amino acid transport systems b0, + and L during development of preimplantation mouse conceptuses. Biochim Biophys Acta 1021(1):77–84

    PubMed  Google Scholar 

  125. Colonna R, Mangia F (1983) Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod 28(4):797–803

    CAS  PubMed  Google Scholar 

  126. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 73(2):351–357. doi:10.1095/biolreprod.105.041798

    CAS  PubMed  Google Scholar 

  127. Downs SM, Hudson ED (2000) Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8(4):339–351

    CAS  PubMed  Google Scholar 

  128. Bilodeau-Goeseels S (2006) Effects of culture media and energy sources on the inhibition of nuclear maturation in bovine oocytes. Theriogenology 66(2):297–306. doi:10.1016/j.theriogenology.2005.11.014

    PubMed  Google Scholar 

  129. Kito S, Bavister BD (1997) Gonadotropins, serum, and amino acids alter nuclear maturation, cumulus expansion, and oocyte morphology in hamster cumulus-oocyte complexes in vitro. Biol Reprod 56(5):1281–1289

    CAS  PubMed  Google Scholar 

  130. Songsasen N, Wildt DE (2007) Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim Reprod Sci 98(1–2):2–22. doi:10.1016/j.anireprosci.2006.10.004

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zheng P, Bavister BD, Ji WZ (2002) Amino acid requirements for maturation of rhesus monkey (Macacca mulatta) oocytes in culture. Reproduction 124(4):515–522

    CAS  PubMed  Google Scholar 

  132. Hong J, Lee E (2007) Intrafollicular amino acid concentration and the effect of amino acids in a defined maturation medium on porcine oocyte maturation, fertilization, and preimplantation development. Theriogenology 68(5):728–735. doi:10.1016/j.theriogenology.2007.06.002

    CAS  PubMed  Google Scholar 

  133. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277. doi:10.1152/physrev.00037.2007

    CAS  PubMed  Google Scholar 

  134. Tartia AP, Rudraraju N, Richards T, Hammer MA, Talbot P, Baltz JM (2009) Cell volume regulation is initiated in mouse oocytes after ovulation. Development 136(13):2247–2254. doi:10.1242/dev.036756

    CAS  PubMed  Google Scholar 

  135. Gesink Law DC, Maclehose RF, Longnecker MP (2007) Obesity and time to pregnancy. Hum Reprod 22(2):414–420. doi:10.1093/humrep/del400

    CAS  PubMed  Google Scholar 

  136. Rich-Edwards JW, Goldman MB, Willett WC, Hunter DJ, Stampfer MJ, Colditz GA, Manson JE (1994) Adolescent body mass index and infertility caused by ovulatory disorder. Am J Obstet Gynecol 171(1):171–177

    CAS  PubMed  Google Scholar 

  137. Jungheim ES, Moley KH (2010) Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol 203(6):525–530. doi:10.1016/j.ajog.2010.06.043

    PubMed  PubMed Central  Google Scholar 

  138. Becerra JE, Khoury MJ, Cordero JF, Erickson JD (1990) Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics 85(1):1–9

    CAS  PubMed  Google Scholar 

  139. Greene MF (1999) Spontaneous abortions and major malformations in women with diabetes mellitus. Semin Reprod Endocrinol 17(2):127–136. doi:10.1055/s-2007-1016220

    CAS  PubMed  Google Scholar 

  140. Sadler TW, Hunter ES 3rd, Balkan W, Horton WE Jr (1988) Effects of maternal diabetes on embryogenesis. Am J Perinatol 5(4):319–326. doi:10.1055/s-2007-999717

    CAS  PubMed  Google Scholar 

  141. Doblado M, Moley KH (2007) Glucose metabolism in pregnancy and embryogenesis. Curr Opin Endocrinol Diabetes Obes 14(6):488–493. doi:10.1097/MED.0b013e3282f1cb92

    CAS  PubMed  Google Scholar 

  142. Sinclair KD, Watkins AJ (2013) Parental diet, pregnancy outcomes and offspring health: metabolic determinants in developing oocytes and embryos. Reprod Fertil Dev 26(1):99–114. doi:10.1071/RD13290

    PubMed  Google Scholar 

  143. Dupont J, Reverchon M, Bertoldo MJ, Froment P (2014) Nutritional signals and reproduction. Mol Cell Endocrinol 382(1):527–537. doi:10.1016/j.mce.2013.09.028

    CAS  PubMed  Google Scholar 

  144. Walsh SW, Williams EJ, Evans AC (2011) A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci 123(3–4):127–138. doi:10.1016/j.anireprosci.2010.12.001

    CAS  PubMed  Google Scholar 

  145. Rinaudo P, Wang E (2012) Fetal programming and metabolic syndrome. Annu Rev Physiol 74:107–130. doi:10.1146/annurev-physiol-020911-153245

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Seli E, Babayev E, Collins SC, Nemeth G, Horvath TL (2014) Minireview: metabolism of female reproduction: regulatory mechanisms and clinical implications. Mol Endocrinol 28(6):790–804. doi:10.1210/me.2013-1413

  147. Mircea CN, Lujan ME, Pierson RA (2007) Metabolic fuel and clinical implications for female reproduction. J Obstet Gynaecol Can 29(11):887–902

    PubMed  Google Scholar 

  148. Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH (1989) Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil 86(1):1–10

    CAS  PubMed  Google Scholar 

  149. Lea RG, McCracken JE, McIntyre SS, Smith W, Baird JD (1996) Disturbed development of the preimplantation embryo in the insulin-dependent diabetic BB/E rat. Diabetes 45(11):1463–1470

    CAS  PubMed  Google Scholar 

  150. Moley KH, Chi MM, Mueckler MM (1998) Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol 275(1 Pt 1):E38–E47

    CAS  PubMed  Google Scholar 

  151. Moley KH, Vaughn WK, DeCherney AH, Diamond MP (1991) Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil 93(2):325–332

    CAS  PubMed  Google Scholar 

  152. Moley KH, Vaughn WK, Diamond MP (1994) Manifestations of diabetes mellitus on mouse preimplantation development: effect of elevated concentration of metabolic intermediates. Hum Reprod 9(1):113–121

    CAS  PubMed  Google Scholar 

  153. Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH (2012) High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE 7(11):e49217. doi:10.1371/journal.pone.0049217

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wyman A, Pinto AB, Sheridan R, Moley KH (2008) One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149(2):466–469. doi:10.1210/en.2007-1273

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Colton SA, Pieper GM, Downs SM (2002) Altered meiotic regulation in oocytes from diabetic mice. Biol Reprod 67(1):220–231

    CAS  PubMed  Google Scholar 

  156. Colton SA, Humpherson PG, Leese HJ, Downs SM (2003) Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biol Reprod 69(3):761–770. doi:10.1095/biolreprod.102.013649

    CAS  PubMed  Google Scholar 

  157. Maheshwari A, Stofberg L, Bhattacharya S (2007) Effect of overweight and obesity on assisted reproductive technology–a systematic review. Hum Reprod Update 13(5):433–444. doi:10.1093/humupd/dmm017

    CAS  PubMed  Google Scholar 

  158. Wang JX, Davies M, Norman RJ (2000) Body mass and probability of pregnancy during assisted reproduction treatment: retrospective study. BMJ 321(7272):1320–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Brewer CJ, Balen AH (2010) The adverse effects of obesity on conception and implantation. Reproduction 140(3):347–364. doi:10.1530/REP-09-0568

    CAS  PubMed  Google Scholar 

  160. Cardozo E, Pavone ME, Hirshfeld-Cytron JE (2011) Metabolic syndrome and oocyte quality. Trends Endocrinol Metab 22(3):103–109. doi:10.1016/j.tem.2010.12.002

    CAS  PubMed  Google Scholar 

  161. Styne-Gross A, Elkind-Hirsch K, Scott RT Jr (2005) Obesity does not impact implantation rates or pregnancy outcome in women attempting conception through oocyte donation. Fertil Steril 83(6):1629–1634. doi:10.1016/j.fertnstert.2005.01.099

    PubMed  Google Scholar 

  162. Wattanakumtornkul S, Damario MA, Stevens Hall SA, Thornhill AR, Tummon IS (2003) Body mass index and uterine receptivity in the oocyte donation model. Fertil Steril 80(2):336–340

    PubMed  Google Scholar 

  163. Zenke U, Chetkowski RJ (2004) Transfer and uterine factors are the major recipient-related determinants of success with donor eggs. Fertil Steril 82(4):850–856. doi:10.1016/j.fertnstert.2004.03.057

    PubMed  Google Scholar 

  164. Bellver J, Melo MA, Bosch E, Serra V, Remohi J, Pellicer A (2007) Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril 88(2):446–451. doi:10.1016/j.fertnstert.2006.11.162

    PubMed  Google Scholar 

  165. Bellver J, Rossal LP, Bosch E, Zuniga A, Corona JT, Melendez F, Gomez E, Simon C, Remohi J, Pellicer A (2003) Obesity and the risk of spontaneous abortion after oocyte donation. Fertil Steril 79(5):1136–1140

    PubMed  Google Scholar 

  166. Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, Leach R (2011) Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod 26(1):245–252. doi:10.1093/humrep/deq306

    PubMed  Google Scholar 

  167. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15(5):553–572. doi:10.1093/humupd/dmp016

    CAS  PubMed  Google Scholar 

  168. Wang Q, Ratchford AM, Chi MM, Schoeller E, Frolova A, Schedl T, Moley KH (2009) Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol Endocrinol 23(10):1603–1612. doi:10.1210/me.2009-0033

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ratchford AM, Chang AS, Chi MM, Sheridan R, Moley KH (2007) Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. Am J Physiol Endocrinol Metab 293(5):E1198–E1206. doi:10.1152/ajpendo.00097.2007

    CAS  PubMed  Google Scholar 

  170. Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, Guo L, Chao SB, Chen Z, Liang XW, Hou Y, Schatten H, Sun QY (2012) Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod 27(7):2130–2145. doi:10.1093/humrep/des137

    CAS  PubMed  Google Scholar 

  171. Van Blerkom J, Davis PW, Lee J (1995) ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod 10(2):415–424

    CAS  PubMed  Google Scholar 

  172. Quinn P, Wales RG (1973) The relationships between the ATP content of preimplantation mouse embryos and their development in vitro during culture. J Reprod Fertil 35(2):301–309

    CAS  PubMed  Google Scholar 

  173. Wordeman L (2010) How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol 21(3):260–268. doi:10.1016/j.semcdb.2010.01.018

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang X, Wu XQ, Lu S, Guo YL, Ma X (2006) Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res 16(10):841–850. doi:10.1038/sj.cr.7310095

    CAS  PubMed  Google Scholar 

  175. Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1(1):40–46

    CAS  PubMed  Google Scholar 

  176. Kruger N, Tolic-Norrelykke IM (2008) Association of mitochondria with spindle poles facilitates spindle alignment. Curr Biol 18(15):R646–R647. doi:10.1016/j.cub.2008.06.069

    PubMed  Google Scholar 

  177. Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, Liang XY (2007) Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod 22(6):1681–1686. doi:10.1093/humrep/dem070

    CAS  PubMed  Google Scholar 

  178. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495. doi:10.1016/j.cell.2005.02.001

    CAS  PubMed  Google Scholar 

  179. Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K (2009) Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 20(3):346–353

    CAS  PubMed  Google Scholar 

  180. Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J (2010) Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE 5(4):e10074. doi:10.1371/journal.pone.0010074

    PubMed  PubMed Central  Google Scholar 

  181. Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG, Mitchell M (2008) Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab 294(2):E425–E434. doi:10.1152/ajpendo.00409.2007

    CAS  PubMed  Google Scholar 

  182. Qiao J, Feng HL (2011) Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 17(1):17–33. doi:10.1093/humupd/dmq032

    PubMed  PubMed Central  Google Scholar 

  183. Jimenez PT, Frolova AI, Chi MM, Grindler NM, Willcockson AR, Reynolds KA, Zhao Q, Moley KH (2013) DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice. Endocrinology 154(12):4835–4844. doi:10.1210/en.2012-2140

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Harris SE, Maruthini D, Tang T, Balen AH, Picton HM (2010) Metabolism and karyotype analysis of oocytes from patients with polycystic ovary syndrome. Hum Reprod 25(9):2305–2315. doi:10.1093/humrep/deq181

    CAS  PubMed  Google Scholar 

  185. Walters KA, Allan CM, Handelsman DJ (2012) Rodent models for human polycystic ovary syndrome. Biol Reprod 86(5):149. doi:10.1095/biolreprod.111.097808

    PubMed  Google Scholar 

  186. van Houten EL, Visser JA (2014) Mouse models to study polycystic ovary syndrome: a possible link between metabolism and ovarian function? Reprod Biol 14(1):32–43. doi:10.1016/j.repbio.2013.09.007

    PubMed  Google Scholar 

  187. King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. doi:10.1111/j.1476-5381.2012.01911.x

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL (2010) High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 151(11):5438–5445. doi:10.1210/en.2010-0551

    CAS  PubMed  Google Scholar 

  189. Wu LL, Russell DL, Norman RJ, Robker RL (2012) Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development. Mol Endocrinol 26(4):562–573. doi:10.1210/me.2011-1362

    CAS  PubMed  Google Scholar 

  190. Wu LL, Norman RJ, Robker RL (2011) The impact of obesity on oocytes: evidence for lipotoxicity mechanisms. Reprod Fertil Dev 24(1):29–34. doi:10.1071/RD11904

    CAS  PubMed  Google Scholar 

  191. Jawerbaum A, Gonzalez ET, Carolina P, Debora S, Christian P, Gimeno MA (1999) Diminished levels of prostaglandin E in type I diabetic oocyte-cumulus complexes. Influence of nitric oxide and superoxide dismutase. Reprod Fertil Dev 11(2):105–110

    CAS  PubMed  Google Scholar 

  192. Jawerbaum A, Gonzalez ET, Faletti A, Novaro V, Vitullo A, Gimeno MA (1996) Altered prostanoid production by cumulus-oocyte complexes in a rat model of non-insulin-dependent diabetes mellitus. Prostaglandins 52(3):209–219

    CAS  PubMed  Google Scholar 

  193. Rooke JA, Ainslie A, Watt RG, Alink FM, McEvoy TG, Sinclair KD, Garnsworthy PC, Webb R (2009) Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reprod Fertil Dev 21(3):419–427

    CAS  PubMed  Google Scholar 

  194. Sinclair KD, Kuran M, Gebbie FE, Webb R, McEvoy TG (2000) Nitrogen metabolism and fertility in cattle: II. Development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J Anim Sci 78(10):2670–2680

    CAS  PubMed  Google Scholar 

  195. De Wit AA, Cesar ML, Kruip TA (2001) Effect of urea during in vitro maturation on nuclear maturation and embryo development of bovine cumulus-oocyte-complexes. J Dairy Sci 84(8):1800–1804. doi:10.3168/jds.S0022-0302(01)74618-8

    PubMed  Google Scholar 

  196. Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE (2008) Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43(5):623–632. doi:10.1111/j.1439-0531.2007.00961.x

    CAS  PubMed  Google Scholar 

  197. Leroy JL, Rizos D, Sturmey R, Bossaert P, Gutierrez-Adan A, Van Hoeck V, Valckx S, Bols PE (2011) Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reprod Fertil Dev 24(1):1–12. doi:10.1071/RD11901

    CAS  PubMed  Google Scholar 

  198. Van Blerkom J (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128(3):269–280. doi:10.1530/rep.1.00240

    PubMed  Google Scholar 

  199. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49. doi:10.1186/1477-7827-10-49

    PubMed  PubMed Central  Google Scholar 

  200. Turner N, Robker RL (2014) Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol Hum Reprod. doi:10.1093/molehr/gau042

    PubMed  Google Scholar 

  201. Rodgers RJ, Irving-Rodgers HF (2010) Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 82(6):1021–1029. doi:10.1095/biolreprod.109.082941

    CAS  PubMed  Google Scholar 

  202. Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ (2009) Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab 94(5):1533–1540. doi:10.1210/jc.2008-2648

    CAS  PubMed  Google Scholar 

  203. Valckx SD, De Pauw I, De Neubourg D, Inion I, Berth M, Fransen E, Bols PE, Leroy JL (2012) BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality. Hum Reprod 27(12):3531–3539. doi:10.1093/humrep/des350

    CAS  PubMed  Google Scholar 

  204. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16(13):1738–1748. doi:10.1096/fj.01-1027com

    CAS  PubMed  Google Scholar 

  205. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351. doi:10.1093/cvr/cvn104

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Graier WF, Malli R, Kostner GM (2009) Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab 20(4):186–193. doi:10.1016/j.tem.2009.01.004

    CAS  PubMed  Google Scholar 

  207. Downs SM (1995) The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 167(2):502–512. doi:10.1006/dbio.1995.1044

    CAS  PubMed  Google Scholar 

  208. Chang AS, Dale AN, Moley KH (2005) Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology 146(5):2445–2453. doi:10.1210/en.2004-1472

    CAS  PubMed  Google Scholar 

  209. Ratchford AM, Esguerra CR, Moley KH (2008) Decreased oocyte-granulosa cell gap junction communication and connexin expression in a type 1 diabetic mouse model. Mol Endocrinol 22(12):2643–2654. doi:10.1210/me.2007-0495

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang Q, Frolova AI, Purcell S, Adastra K, Schoeller E, Chi MM, Schedl T, Moley KH (2010) Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS ONE 5(12):e15901. doi:10.1371/journal.pone.0015901

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang Q, Chi MM, Moley KH (2012) Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice. Endocrinology 153(4):1984–1989. doi:10.1210/en.2011-1815

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Baird DT, Collins J, Egozcue J, Evers LH, Gianaroli L, Leridon H, Sunde A, Templeton A, Van Steirteghem A, Cohen J, Crosignani PG, Devroey P, Diedrich K, Fauser BC, Fraser L, Glasier A, Liebaers I, Mautone G, Penney G, Tarlatzis B (2005) Fertility and ageing. Hum Reprod Update 11(3):261–276. doi:10.1093/humupd/dmi006

    CAS  PubMed  Google Scholar 

  213. Cheng PP, Xia JJ, Wang HL, Chen JB, Wang FY, Zhang Y, Huang X, Zhang QJ, Qi ZQ (2011) Islet transplantation reverses the effects of maternal diabetes on mouse oocytes. Reproduction 141(4):417–424. doi:10.1530/REP-10-0370

    CAS  PubMed  Google Scholar 

  214. Machtinger R, Combelles CM, Missmer SA, Correia KF, Fox JH, Racowsky C (2012) The association between severe obesity and characteristics of failed fertilized oocytes. Hum Reprod 27(11):3198–3207. doi:10.1093/humrep/des308

    CAS  PubMed  Google Scholar 

  215. Jones KT, Lane SI (2012) Chromosomal, metabolic, environmental, and hormonal origins of aneuploidy in mammalian oocytes. Exp Cell Res 318(12):1394–1399. doi:10.1016/j.yexcr.2012.02.012

    CAS  PubMed  Google Scholar 

  216. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291. doi:10.1038/35066065

    CAS  PubMed  Google Scholar 

  217. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12(8):565–575. doi:10.1038/nrg3032

    CAS  PubMed  Google Scholar 

  218. Ge ZJ, Liang XW, Guo L, Liang QX, Luo SM, Wang YP, Wei YC, Han ZM, Schatten H, Sun QY (2013) Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol Reprod 88(5):117. doi:10.1095/biolreprod.112.105981

    PubMed  Google Scholar 

  219. Ding L, Pan R, Huang X, Wang JX, Shen YT, Xu L, Zhang Y, Liu Y, He XQ, Yang XJ, Qi ZQ, Wang HL (2012) Changes in histone acetylation during oocyte meiotic maturation in the diabetic mouse. Theriogenology 78(4):784–792. doi:10.1016/j.theriogenology.2012.03.026

    CAS  PubMed  Google Scholar 

  220. Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY (2014) DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect 122(2):159–164. doi:10.1289/ehp.1307047

    PubMed  PubMed Central  Google Scholar 

  221. Minge CE, Bennett BD, Norman RJ, Robker RL (2008) Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149(5):2646–2656. doi:10.1210/en.2007-1570

    CAS  PubMed  Google Scholar 

  222. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137(6):859–870. doi:10.1242/dev.039487

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9–17. doi:10.1016/j.cmet.2012.06.001

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153(1):56–69. doi:10.1016/j.cell.2013.03.004

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, VanGilst M, Hockenbery D (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285(47):36267–36274. doi:10.1074/jbc.M110.141606

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23(2):207–217. doi:10.1016/j.molcel.2006.05.040

    CAS  PubMed  Google Scholar 

  227. Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109. doi:10.1038/nrg3142

    Google Scholar 

  228. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329(5996):1201–1205. doi:10.1126/science.1191241

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6(12):665–675. doi:10.1038/nrendo.2010.188

    CAS  PubMed  Google Scholar 

  230. Sobinoff AP, Sutherland JM, McLaughlin EA (2013) Intracellular signalling during female gametogenesis. Mol Hum Reprod 19(5):265–278. doi:10.1093/molehr/gas065

    CAS  PubMed  Google Scholar 

  231. Siddappa D, Kalaiselvanraja A, Bordignon V, Dupuis L, Gasperin BG, Roux PP, Duggavathi R (2014) Mechanistic target of rapamycin (MTOR) signaling during ovulation in mice. Mol Reprod Dev 81(7):655–665. doi:10.1002/mrd.22333

    CAS  PubMed  Google Scholar 

  232. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319(5863):611–613. doi:10.1126/science.1152257

    CAS  PubMed  Google Scholar 

  233. Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI, Ramalho-Santos M, Conti M (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15(12):1415–1423. doi:10.1038/ncb2873

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wang N, Luo LL, Xu JJ, Xu MY, Zhang XM, Zhou XL, Liu WJ, Fu YC (2014) Obesity accelerates ovarian follicle development and follicle loss in rats. Metab, Clin Exp 63(1):94–103. doi:10.1016/j.metabol.2013.09.001

    CAS  Google Scholar 

  235. Yaba A, Demir N (2012) The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovar Res 5(1):38. doi:10.1186/1757-2215-5-38

    CAS  Google Scholar 

  236. Niu Z, Lin N, Gu R, Sun Y, Feng Y (2014) Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab:jc20133942. doi:10.1210/jc.2013-3942

  237. Ola SI, Sun QY (2012) Factors influencing the biochemical markers for predicting mammalian oocyte quality. J Reprod Dev 58(4):385–392

    CAS  PubMed  Google Scholar 

  238. Heller DT, Schultz RM (1980) Ribonucleoside metabolism by mouse oocytes: metabolic cooperativity between the fully grown oocyte and cumulus cells. J Exp Zool 214(3):355–364. doi:10.1002/jez.1402140314

    CAS  PubMed  Google Scholar 

  239. Fourcroy JL (1982) RNA synthesis in immature mouse oocyte development. J Exp Zool 219(2):257–266. doi:10.1002/jez.1402190214

    CAS  PubMed  Google Scholar 

  240. Downs SM, Coleman DL, Eppig JJ (1986) Maintenance of murine oocyte meiotic arrest: uptake and metabolism of hypoxanthine and adenosine by cumulus cell-enclosed and denuded oocytes. Dev Biol 117(1):174–183

    CAS  PubMed  Google Scholar 

  241. Racowsky C (1986) The releasing action of calcium upon cyclic AMP-dependent meiotic arrest in hamster oocytes. J Exp Zool 239(2):263–275. doi:10.1002/jez.1402390214

    CAS  PubMed  Google Scholar 

  242. Bleil JD, Wassarman PM (1980) Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc Natl Acad Sci USA 77(2):1029–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Chi MM, Moley KH (2003) Single-embryo measurement of basal- and insulin-stimulated glucose uptake. Methods Mol Med 83:171–178. doi:10.1385/1-59259-377-1:171

    CAS  PubMed  Google Scholar 

  244. Chi MM, Hoehn A, Moley KH (2002) Metabolic changes in the glucose-induced apoptotic blastocyst suggest alterations in mitochondrial physiology. Am J Phys Endocrinol Metab 283(2):E226–E232. doi:10.1152/ajpendo.00046.2002

    CAS  Google Scholar 

  245. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23(11):544–546. doi:10.1016/j.tibtech.2005.08.005

    CAS  PubMed  Google Scholar 

  246. Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51(5):1218–1227. doi:10.1194/jlr.D001768

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Koek MM, Bakels F, Engel W, van den Maagdenberg A, Ferrari MD, Coulier L, Hankemeier T (2010) Metabolic profiling of ultrasmall sample volumes with GC/MS: from microliter to nanoliter samples. Anal Chem 82(1):156–162. doi:10.1021/ac9015787

    CAS  PubMed  Google Scholar 

  248. Ferreira CR, Eberlin LS, Hallett JE, Cooks RG (2012) Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J Mass Spectrom 47(1):29–33. doi:10.1002/jms.2022

    CAS  PubMed  Google Scholar 

  249. Seli E, Robert C, Sirard MA (2010) OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod 16(8):513–530. doi:10.1093/molehr/gaq041

    CAS  PubMed  Google Scholar 

  250. Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK (2004) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9(1):1–31. doi:10.1080/13547500410001668379

    CAS  PubMed  Google Scholar 

  251. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, Leese HJ (2002) Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 17(4):999–1005

    CAS  PubMed  Google Scholar 

  252. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, Lieberman BA, Leese HJ (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19(10):2319–2324. doi:10.1093/humrep/deh409

    CAS  PubMed  Google Scholar 

  253. Katz-Jaffe MG, Gardner DK (2007) Embryology in the era of proteomics. Theriogenology 68(Suppl 1):S125–S130. doi:10.1016/j.theriogenology.2007.03.014

    CAS  PubMed  Google Scholar 

  254. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH (2007) Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88(5):1350–1357. doi:10.1016/j.fertnstert.2007.07.1390

    PubMed  Google Scholar 

  255. Frey R, Muck W, Kirschbaum N, Kratzschmar J, Weimann G, Wensing G (2011) Riociguat (BAY 63-2521) and warfarin: a pharmacodynamic and pharmacokinetic interaction study. J Clin Pharmacol 51(7):1051–1060. doi:10.1177/0091270010378119

    CAS  PubMed  Google Scholar 

  256. Gosden RG, Sadler IH, Reed D, Hunter RH (1990) Characterization of ovarian follicular fluids of sheep, pigs and cows using proton nuclear magnetic resonance spectroscopy. Experientia 46(10):1012–1015

    CAS  PubMed  Google Scholar 

  257. Bentley JD, Jentoft JE, Foreman D, Ambrose D (1990) 31P nuclear magnetic resonance (NMR) identification of sugar phosphates in isolated rat ovarian follicular granulosa cells and the effects of follicle-stimulating hormone. Mol Cell Endocrinol 73(2–3):179–185

    CAS  PubMed  Google Scholar 

  258. Bender K, Walsh S, Evans AC, Fair T, Brennan L (2010) Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139(6):1047–1055. doi:10.1530/REP-10-0068

    CAS  PubMed  Google Scholar 

  259. Zhang CM, Zhao Y, Li R, Yu Y, Yan LY, Li L, Liu NN, Liu P, Qiao J (2014) Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome. BMC Pregnancy Childbirth 14:11. doi:10.1186/1471-2393-14-11

    PubMed  PubMed Central  Google Scholar 

  260. Hemmings KE, Leese HJ, Picton HM (2012) Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biol Reprod 86(5):165. doi:10.1095/biolreprod.111.092585

    PubMed  Google Scholar 

  261. Ahlstrom A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T (2011) Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online. doi:10.1016/j.rbmo.2011.01.009

    PubMed  Google Scholar 

  262. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH (2008) Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 90(1):77–83. doi:10.1016/j.fertnstert.2007.11.058

    PubMed  Google Scholar 

  263. Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, Sakkas D, Wikland M (2012) Non-invasive metabolomic profiling of day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod 27(1):89–96. doi:10.1093/humrep/der373

    CAS  PubMed  Google Scholar 

  264. Vergouw CG, Kieslinger DC, Kostelijk EH, Botros LL, Schats R, Hompes PG, Sakkas D, Lambalk CB (2012) Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod 27(8):2304–2311. doi:10.1093/humrep/des175

    CAS  PubMed  Google Scholar 

  265. el Mouatassim S, Hazout A, Bellec V, Menezo Y (1999) Glucose metabolism during the final stage of human oocyte maturation: genetic expression of hexokinase, glucose phosphate isomerase and phosphofructokinase. Zygote 7(1):45–50

    PubMed  Google Scholar 

  266. Tsutsumi O, Yano T, Satoh K, Mizuno M, Kato T (1990) Studies of hexokinase activity in human and mouse oocyte. Am J Obstet Gynecol 162(5):1301–1304

    CAS  PubMed  Google Scholar 

  267. Peterson AC, Wong GG (1978) Genetic regulation of glucose phosphate isomerase in mouse oocytes. Nature 276(5685):267–269

    CAS  PubMed  Google Scholar 

  268. Tsutsumi O, Yano T, Taketani Y (1994) Phosphofructokinase activity as a measure of maturation of rat oocytes developed in vivo and in vitro. Horm Res 41(Suppl 1):63–67

    CAS  PubMed  Google Scholar 

  269. Egerszegi I, Alm H, Ratky J, Heleil B, Brussow KP, Torner H (2010) Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod Fertil Dev 22(5):830–838. doi:10.1071/RD09140

    CAS  PubMed  Google Scholar 

  270. Silva DS, Rodriguez P, Galuppo A, Arruda NS, Rodrigues JL (2013) Selection of bovine oocytes by brilliant cresyl blue staining: effect on meiosis progression, organelle distribution and embryo development. Zygote 21(3):250–255. doi:10.1017/S0967199411000487

    CAS  PubMed  Google Scholar 

  271. Torner H, Ghanem N, Ambros C, Holker M, Tomek W, Phatsara C, Alm H, Sirard MA, Kanitz W, Schellander K, Tesfaye D (2008) Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction 135(2):197–212. doi:10.1530/REP-07-0348

    CAS  PubMed  Google Scholar 

  272. Lequarre AS, Grisart B, Moreau B, Schuurbiers N, Massip A, Dessy F (1997) Glucose metabolism during bovine preimplantation development: analysis of gene expression in single oocytes and embryos. Mol Reprod Dev 48(2):216–226. doi:10.1002/(SICI)1098-2795(199710)48:2<216:AID-MRD9>3.0.CO;2-V

    CAS  PubMed  Google Scholar 

  273. de Schepper GG, van Noorden CJ, Tas J, James J (1982) Cytochemical determination of glucose-6-phosphate dehydrogenase (G6PDH) activity in mouse oocytes with the use of a polyacrylamide carrier. Cell Biol Int Rep 6(7):651

    PubMed  Google Scholar 

  274. Yazigi RA, Chi MM, Mastrogiannis DS, Strickler RC, Yang VC, Lowry OH (1993) Enzyme activities and maturation in unstimulated and exogenous gonadotropin-stimulated human oocytes. Am J Physiol 264(4 Pt 1):C951–C955

    CAS  PubMed  Google Scholar 

  275. Acevedo N, Wang X, Dunn RL, Smith GD (2007) Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol Reprod Dev 74(2):178–188. doi:10.1002/mrd.20495

    CAS  PubMed  Google Scholar 

  276. Wang X, Liu XT, Dunn R, Ohl DA, Smith GD (2003) Glycogen synthase kinase-3 regulates mouse oocyte homologue segregation. Mol Reprod Dev 64(1):96–105. doi:10.1002/mrd.10213

    PubMed  Google Scholar 

  277. Uzbekova S, Salhab M, Perreau C, Mermillod P, Dupont J (2009) Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: possible involvement in meiosis during in vitro maturation. Reproduction 138(2):235–246. doi:10.1530/REP-09-0136

    CAS  PubMed  Google Scholar 

  278. Williams SA, Stanley P (2008) Mouse fertility is enhanced by oocyte-specific loss of core 1-derived O-glycans. FASEB J 22(7):2273–2284. doi:10.1096/fj.07-101709

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Iwata N, Inazu N, Satoh T (1990) The purification and properties of aldose reductase from rat ovary. Arch Biochem Biophys 282(1):70–77

    CAS  PubMed  Google Scholar 

  280. Kaneko T, Iuchi Y, Takahashi M, Fujii J (2003) Colocalization of polyol-metabolizing enzymes and immunological detection of fructated proteins in the female reproductive system of the rat. Histochem Cell Biol 119(4):309–315. doi:10.1007/s00418-003-0516-5

    CAS  PubMed  Google Scholar 

  281. Colton SA, Downs SM (2004) Potential role for the sorbitol pathway in the meiotic dysfunction exhibited by oocytes from diabetic mice. J Exp Zool Part A Comp Exp Biol 301(5):439–448. doi:10.1002/jez.a.20070

    Google Scholar 

  282. Cetica P, Pintos L, Dalvit G, Beconi M (2003) Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction 126(6):753–763

    CAS  PubMed  Google Scholar 

  283. Wright RW Jr, Cupps PT, Watson JG, Chaykin S (1976) Lactate dehydrogenase isoenzyme patterns in oocytes, unfertilized eggs and embryos from mice and cattle. J Anim Sci 43(3):613–616

    CAS  PubMed  Google Scholar 

  284. Cetica PD, Pintos LN, Dalvit GC, Beconi MT (1999) Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology 51(3):541–550

    CAS  PubMed  Google Scholar 

  285. Mangia F, Epstein CJ (1975) Biochemical studies of growing mouse oocytes: preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities. Dev Biol 45(2):211–220

    CAS  PubMed  Google Scholar 

  286. Yuan Y, Ida JM, Paczkowski M, Krisher RL (2011) Identification of developmental competence-related genes in mature porcine oocytes. Mol Reprod Dev 78(8):565–575. doi:10.1002/mrd.21351

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Okawara S, Hamano S, Tetsuka M (2009) Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation. J Reprod Dev 55(2):177–182

    CAS  PubMed  Google Scholar 

  288. Gentile L, Monti M, Sebastiano V, Merico V, Nicolai R, Calvani M, Garagna S, Redi CA, Zuccotti M (2004) Single-cell quantitative RT-PCR analysis of Cpt1b and Cpt2 gene expression in mouse antral oocytes and in preimplantation embryos. Cytogenet Genome Res 105(2–4):215–221. doi:10.1159/000078191

    CAS  PubMed  Google Scholar 

  289. Eliyahu E, Shtraizent N, Shalgi R, Schuchman EH (2012) Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem 30(3):735–748. doi:10.1159/000341453

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Eliyahu E, Shtraizent N, Martinuzzi K, Barritt J, He X, Wei H, Chaubal S, Copperman AB, Schuchman EH (2010) Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J 24(4):1229–1238. doi:10.1096/fj.09-145508

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Zhang CH, Qian WP, Qi ST, Ge ZJ, Min LJ, Zhu XL, Huang X, Liu JP, Ouyang YC, Hou Y, Schatten H, Sun QY (2013) Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reprod Biol Endocrinol 11:31. doi:10.1186/1477-7827-11-31

    PubMed  PubMed Central  Google Scholar 

  292. Jawerbaum A, Gonzalez ET, Novaro V, Faletti A, Gimeno MA (1998) Nitric oxide mediates increased prostaglandin E production by oocyte-cumulus complexes in the non-insulin-dependent diabetic rat. Reprod Fertil Dev 10(2):185–190

    CAS  PubMed  Google Scholar 

  293. Kim K, Kim CH, Moley KH, Cheon YP (2007) Disordered meiotic regulation of oocytes by duration of diabetes mellitus in BBdp rat. Reprod Sci 14(5):467–474. doi:10.1177/1933719107306228

    PubMed  Google Scholar 

  294. Chattopadhayay R, Ganesh A, Samanta J, Jana SK, Chakravarty BN, Chaudhury K (2010) Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Invest 69(3):197–202. doi:10.1159/000270900

    CAS  PubMed  Google Scholar 

  295. Tian X, Diaz FJ (2013) Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 376(1):51–61. doi:10.1016/j.ydbio.2013.01.015

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Watkins AJ, Wilkins A, Cunningham C, Perry VH, Seet MJ, Osmond C, Eckert JJ, Torrens C, Cagampang FR, Cleal J, Gray WP, Hanson MA, Fleming TP (2008) Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J Physiol 586(8):2231–2244. doi:10.1113/jphysiol.2007.149229

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Ferguson EM, Slevin J, Hunter MG, Edwards SA, Ashworth CJ (2007) Beneficial effects of a high fibre diet on oocyte maturity and embryo survival in gilts. Reproduction 133(2):433–439. doi:10.1530/REP-06-0018

    CAS  PubMed  Google Scholar 

  298. Weaver AC, Kelly JM, Kind KL, Gatford KL, Kennaway DJ, Herde PJ, van Wettere WH (2013) Oocyte maturation and embryo survival in nulliparous female pigs (gilts) is improved by feeding a lupin-based high-fibre diet. Reprod Fertil Dev 25(8):1216–1223. doi:10.1071/RD12329

    CAS  PubMed  Google Scholar 

  299. Tian X, Diaz FJ (2012) Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology 153(2):873–886. doi:10.1210/en.2011-1599

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by National Key Scientific Research Projects (2014CB943200), Natural Science Foundation of the Jiangsu Higher Education Institutions (13KJA310001), Fundamental Research Funds for the Central Universities (0606J0451) of China, the American Diabetes Association (KHM), and the NIH-NICHD (R01).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Gu or Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Liu, H., Gu, X. et al. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell. Mol. Life Sci. 72, 251–271 (2015). https://doi.org/10.1007/s00018-014-1739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1739-4

Keywords

Navigation