Skip to main content

Advertisement

Log in

MicroRNAs in adrenal tumors: relevance for pathogenesis, diagnosis, and therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Several lines of evidence support the relevance of microRNAs in both adrenocortical and adrenomedullary (pheochromocytomas) tumors. Significantly differentially expressed microRNAs have been described among benign and malignant adrenocortical tumors and different forms of pheochromocytomas that might affect different pathogenic pathways. MicroRNAs can be exploited as markers of malignancy or disease recurrence. Besides tissue microRNAs, novel data show that microRNAs are released in body fluids, and blood-borne microRNAs can be envisaged as minimally invasive markers of malignancy or prognosis. MicroRNAs might even serve as treatment targets that could expand the rather-limited therapeutic repertoire in the field of adrenal tumors. In this review, we present a critical synopsis of the recent observations made in the field of adrenal tumor-associated microRNAs regarding their pathogenic, diagnostic, and potential therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnaldi G, Boscaro M (2012) Adrenal incidentaloma. Best Pract Res Clin Endocrinol Metab 26(4):405–419. doi:10.1016/j.beem.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  2. Fassnacht M, Kroiss M, Allolio B (2013) Update in adrenocortical carcinoma. J Clin Endocrinol Metab 98(12):4551–4564. doi:10.1210/jc.2013-3020

    Article  CAS  PubMed  Google Scholar 

  3. Gimm O, DeMicco C, Perren A, Giammarile F, Walz MK, Brunaud L (2012) Malignant pheochromocytomas and paragangliomas: a diagnostic challenge. Langenbeck’s Arch Surg 397(2):155–177. doi:10.1007/s00423-011-0880-x

    Article  Google Scholar 

  4. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB (2007) The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 14(3):569–585. doi:10.1677/erc-07-0074

    Article  CAS  PubMed  Google Scholar 

  5. Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133. doi:10.1093/carcin/bgs140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Malumbres M (2013) miRNAs and cancer: an epigenetics view. Mol Asp Med 34(4):863–874. doi:10.1016/j.mam.2012.06.005

    Article  CAS  Google Scholar 

  7. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662. doi:10.1242/dev.02073

    Article  CAS  PubMed  Google Scholar 

  8. Salmanidis M, Pillman K, Goodall G, Bracken C (2014) Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2014.03.010

    PubMed  Google Scholar 

  9. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. New Engl J Med 353(17):1768–1771. doi:10.1056/NEJMp058190

    Article  CAS  PubMed  Google Scholar 

  10. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080. doi:10.1073/pnas.0509603102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Klopfleisch R, Weiss AT, Gruber AD (2011) Excavation of a buried treasure–DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol 26(6):797–810

    CAS  PubMed  Google Scholar 

  12. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477. doi:10.1038/nrclinonc.2011.76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11(3):145–156. doi:10.1038/nrclinonc.2014.5

    Article  CAS  PubMed  Google Scholar 

  14. McDermott AM, Heneghan HM, Miller N, Kerin MJ (2011) The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm Res 28(12):3016–3029. doi:10.1007/s11095-011-0550-2

    Article  CAS  PubMed  Google Scholar 

  15. Ritchie W, Rasko JE, Flamant S (2013) MicroRNA target prediction and validation. Adv Exp Med Biol 774:39–53. doi:10.1007/978-94-007-5590-1_3

    Article  CAS  PubMed  Google Scholar 

  16. Page GP, Zakharkin SO, Kim K, Mehta T, Chen L, Zhang K (2007) Microarray analysis. Methods Mol Biol 404:409–430. doi:10.1007/978-1-59745-530-5_20

    Article  CAS  PubMed  Google Scholar 

  17. Bertherat J, Bertagna X (2009) Pathogenesis of adrenocortical cancer. Best Pract Res Clin Endocrinol Metab 23(2):261–271. doi:10.1016/j.beem.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  18. Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E (2011) MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer 117(8):1630–1639. doi:10.1002/cncr.25724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Soon PS, Tacon LJ, Gill AJ, Bambach CP, Sywak MS, Campbell PR, Yeh MW, Wong SG, Clifton-Bligh RJ, Robinson BG, Sidhu SB (2009) miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin Cancer Res 15(24):7684–7692. doi:10.1158/1078-0432.ccr-09-1587

    Article  CAS  PubMed  Google Scholar 

  20. Özata DM, Caramuta S, Velazquez-Fernandez D, Akcakaya P, Xie H, Hoog A, Zedenius J, Backdahl M, Larsson C, Lui WO (2011) The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr-Relat Cancer 18(6):643–655. doi:10.1530/erc-11-0082

    Article  PubMed Central  PubMed  Google Scholar 

  21. Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA (2013) The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev 27(23):2543–2548. doi:10.1101/gad.224170.113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, Zhang Y, Lai P, Fan X, Zhou X, Lin J, Li M, Ma W, Luo S, Bai X (2014) miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res 74(11):3031–3042. doi:10.1158/0008-5472.can-13-2193

    Article  CAS  PubMed  Google Scholar 

  23. Bertero T, Bourget-Ponzio I, Puissant A, Loubat A, Mari B, Meneguzzi G, Auberger P, Barbry P, Ponzio G, Rezzonico R (2013) Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties. Cell Cycle 12(14):2183–2193. doi:10.1210/jc.2001-011799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tömböl Z, Szabó PM, Molnar V, Wiener Z, Tolgyesi G, Horanyi J, Riesz P, Reismann P, Patocs A, Liko I, Gaillard RC, Falus A, Racz K, Igaz P (2009) Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocr Relat Cancer 16(3):895–906. doi:10.1677/erc-09-0096

    Article  PubMed  Google Scholar 

  25. Yang Y, Liu L, Zhang Y, Guan H, Wu J, Zhu X, Yuan J, Li M (2014) MiR-503 targets PI3K p85 and IKK-beta and suppresses progression of non-small cell lung cancer. Int J Cancer 135(7):1531–1542. doi:10.1002/ijc.28799

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Q, Feng MG, Mo YY (2009) Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 9:194. doi:10.1186/1471-2407-9-194

    Article  PubMed Central  PubMed  Google Scholar 

  27. Devlin C, Greco S, Martelli F, Ivan M (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63(2):94–100. doi:10.1002/iub.427

    CAS  PubMed  Google Scholar 

  28. Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, Scagliotti GV, Volante M, Papotti M (2014) MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. doi:10.1016/j.humpath.2014.04.005

    Google Scholar 

  29. Schmitz KJ, Helwig J, Bertram S, Sheu SY, Suttorp AC, Seggewiss J, Willscher E, Walz MK, Worm K, Schmid KW (2011) Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumors. J Clin Pathol 64(6):529–535. doi:10.1136/jcp.2010.085621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14(7):659–665. doi:10.1038/ncb2521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ribeiro TC, Latronico AC (2012) Insulin-like growth factor system on adrenocortical tumorigenesis. Mol Cell Endocrinol 351(1):96–100. doi:10.1016/j.mce.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  32. Chabre O, Libe R, Assie G, Barreau O, Bertherat J, Bertagna X, Feige JJ, Cherradi N (2013) Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer 20(4):579–594. doi:10.1530/erc-13-0051

    CAS  PubMed  Google Scholar 

  33. Hui W, Yuntao L, Lun L, WenSheng L, ChaoFeng L, HaiYong H, Yueyang B (2013) MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PLoS ONE 8(1):e54932. doi:10.1371/journal.pone.0054932

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY (2013) miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Resh 41(16):7905–7919. doi:10.1093/nar/gkt565

    Article  CAS  Google Scholar 

  35. Fu MG, Li S, Yu TT, Qian LJ, Cao RS, Zhu H, Xiao B, Jiao CH, Tang NN, Ma JJ, Hua J, Zhang WF, Zhang HJ, Shi RH (2013) Differential expression of miR-195 in esophageal squamous cell carcinoma and miR-195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42. FEBS Lett 587(21):3471–3479. doi:10.1016/j.febslet.2013.08.036

    Article  CAS  PubMed  Google Scholar 

  36. Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, Jia WH, Yuan Y, Zhuang SM (2013) MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 58(2):642–653. doi:10.1002/hep.26373

    Article  CAS  PubMed  Google Scholar 

  37. Bernini GP, Moretti A, Bonadio AG, Menicagli M, Viacava P, Naccarato AG, Iacconi P, Miccoli P, Salvetti A (2002) Angiogenesis in human normal and pathologic adrenal cortex. J Clin Endocrinol Metab 87(11):4961–4965. doi:10.1210/jc.2001-011799

    Article  CAS  PubMed  Google Scholar 

  38. Szabó PM, Butz H, Igaz P, Racz K, Hunyady L, Patocs A (2013) Minireview: miRomics in endocrinology: a novel approach for modeling endocrine diseases. Mol Endocrinol 27(4):573–585. doi:10.1210/me.2012-1220

    Article  PubMed  Google Scholar 

  39. Xie Y, Wei RR, Huang GL, Zhang MY, Yuan YF, Wang HY (2014) Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma. Med Oncol 31(3):844. doi:10.1007/s12032-014-0844-4

    Article  PubMed  Google Scholar 

  40. Luo Q, Li X, Gao Y, Long Y, Chen L, Huang Y, Fang L (2013) MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int 13(1):95. doi:10.1186/1475-2867-13-95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Caramuta S, Lee L, Ozata DM, Akcakaya P, Xie H, Hoog A, Zedenius J, Backdahl M, Larsson C, Lui WO (2013) Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer 20(4):551–564. doi:10.1530/erc-13-0098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cao J, Cai J, Huang D, Han Q, Chen Y, Yang Q, Yang C, Kuang Y, Li D, Wang Z (2014) miR-335 represents an independent prognostic marker in epithelial ovarian cancer. Am J Clin Pathol 141(3):437–442. doi:10.1309/ajcplytzgb54iszc

    Article  PubMed  Google Scholar 

  43. Xiong SW, Lin TX, Xu KW, Dong W, Ling XH, Jiang FN, Chen G, Zhong WD, Huang J (2013) MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res 19(3):529–537. doi:10.1007/s12253-013-9613-5

    Article  CAS  PubMed  Google Scholar 

  44. Lynch J, Meehan MH, Crean J, Copeland J, Stallings RL, Bray IM (2013) Metastasis suppressor microRNA-335 targets the formin family of actin nucleators. PLoS One 8(11):e78428. doi:10.1371/journal.pone.0078428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang Y, Zhao W, Fu Q (2013) miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol Cell Biochem 384(1–2):105–111. doi:10.1007/s11010-013-1786-4

    Article  CAS  PubMed  Google Scholar 

  46. Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y, Hock JM, Yu X (2014) miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 12(1):101–110. doi:10.1158/1541-7786.mcr-13-0136

    Article  CAS  PubMed  Google Scholar 

  47. Cao J, Cai J, Huang D, Han Q, Yang Q, Li T, Ding H, Wang Z (2013) miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep 30(2):701–706. doi:10.3892/or.2013.2482

    CAS  PubMed  Google Scholar 

  48. Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W, Peralta-Del Valle MH, Figueiredo BC, Zambetti GP, Lalli E (2010) Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res 70(11):4666–4675. doi:10.1158/0008-5472.can-09-3970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Li XJ, Luo XQ, Han BW, Duan FT, Wei PP, Chen YQ (2013) MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer 109(8):2189–2198. doi:10.1038/bjc.2013.562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX (2012) MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer 12:519. doi:10.1186/1471-2407-12-519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM (2009) Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 48(7):569–582. doi:10.1002/gcc.20666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73(2):473–477. doi:10.1158/0008-5472.can-12-3731

    Article  CAS  PubMed  Google Scholar 

  53. Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y (2012) A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother 66(1):21–28. doi:10.1016/j.biopha.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  54. Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8(5):706–713. doi:10.4161/rna.8.5.16154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K, Fan D (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Exp Opin Ther Targets 17(9):1073–1080. doi:10.1517/14728222.2013.819853

    Article  CAS  Google Scholar 

  56. Zsippai A, Szabó PM, Szabó DR, Nagy Z, Patocs A, Racz K, Igaz P (2013) In silico analysis of pathways affected by differentially expressed microRNA in adrenocortical tumors. J Endocrinol Invest 36(11):1011–1019. doi:10.3275/9024

    CAS  PubMed  Google Scholar 

  57. Szabó PM, Tamasi V, Molnar V, Andrasfalvy M, Tömböl Z, Farkas R, Kovesdi K, Patocs A, Toth M, Szalai C, Falus A, Racz K, Igaz P (2010) Meta-analysis of adrenocortical tumor genomics data: novel pathogenic pathways revealed. Oncogene 29(21):3163–3172. doi:10.1038/onc.2010.80

    Article  PubMed  Google Scholar 

  58. Assie G, Letouze E, Fassnacht M, Jouinot A, Luscap W, Barreau O, Omeiri H, Rodriguez S, Perlemoine K, Rene-Corail F, Elarouci N, Sbiera S, Kroiss M, Allolio B, Waldmann J, Quinkler M, Mannelli M, Mantero F, Papathomas T, De Krijger R, Tabarin A, Kerlan V, Baudin E, Tissier F, Dousset B, Groussin L, Amar L, Clauser E, Bertagna X, Ragazzon B, Beuschlein F, Libe R, de Reynies A, Bertherat J (2014) Integrated genomic characterization of adrenocortical carcinoma. Nat Gen 46(6):607–612. doi:10.1038/ng.2953

    Article  CAS  Google Scholar 

  59. Velazquez-Fernandez D, Caramuta S, Ozata DM, Lu M, Hoog A, Backdahl M, Larsson C, Lui WO, Zedenius J (2014) MicroRNA expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas. Eur J Endocrinol 170(4):583–591. doi:10.1530/eje-13-0817

    Article  CAS  PubMed  Google Scholar 

  60. Tömböl Z, Szabó PM, Patocs A, Racz K, Igaz P (2010) Differences in microRNA expression profiles of adrenocortical tumors–letter. Clin Cancer Res 16(10):2915. doi:10.1158/1078-0432.ccr-10-0308

    Article  PubMed  Google Scholar 

  61. Hanna JA, Wimberly H, Kumar S, Slack F, Agarwal S, Rimm DL (2012) Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. Biotechniques 52(4):235–245. doi:10.2144/000113837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Szabó DR, Luconi M, Szabó PM, Toth M, Szucs N, Horanyi J, Nagy Z, Mannelli M, Patocs A, Racz K, Igaz P (2014) Analysis of circulating microRNAs in adrenocortical tumors. Lab Invest 94(3):331–339. doi:10.1038/labinvest.2013.148

    Article  PubMed  Google Scholar 

  63. Patel D, Boufraqech M, Jain M, Zhang L, He M, Gesuwan K, Gulati N, Nilubol N, Fojo T, Kebebew E (2013) MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery 154(6):1224–1228. doi:10.1016/j.surg.2013.06.022

    Article  PubMed  Google Scholar 

  64. Chen X, Zhou JY, Zhou JY (2014) MicroRNA-34a: role in cancer and cardiovascular disease. Curr Drug Targets 15:361–373. doi:10.2174/1389450115666140120102935

    Article  CAS  PubMed  Google Scholar 

  65. Brase JC, Wuttig D, Kuner R, Sültmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306. doi:10.1186/1476-4598-9-306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80(2):193–208. doi:10.1016/j.critrevonc.2010.11.004

    Article  PubMed  Google Scholar 

  67. Favier J, Igaz P, Burnichon N, Amar L, Libe R, Badoual C, Tissier F, Bertherat J, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP (2012) Rationale for anti-angiogenic therapy in pheochromocytoma and paraganglioma. Endocr Pathol 23(1):34–42. doi:10.1007/s12022-011-9189-0

    Article  CAS  PubMed  Google Scholar 

  68. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, Lechleiter JD, Sass M, Aronin N, Schiavi F, Boaretto F, Opocher G, Toledo RA, Toledo SP, Stiles C, Aguiar RC, Dahia PL (2010) Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Gen 42(3):229–233. doi:10.1038/ng.533

    Article  CAS  Google Scholar 

  69. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gomez-Grana A, de Cubas AA, Inglada-Perez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernandez-Lavado R, Diaz JA, Gomez-Morales M, Gonzalez-Neira A, Roncador G, Rodriguez-Antona C, Benitez J, Mannelli M, Opocher G, Robledo M, Cascon A (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Gen 43(7):663–667. doi:10.1038/ng.861

    Article  CAS  Google Scholar 

  70. Gimenez-Roqueplo AP, Dahia PL, Robledo M (2012) An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 44(5):328–333. doi:10.1055/s-0031-1301302

    Article  CAS  PubMed  Google Scholar 

  71. de Cubas AA, Leandro-Garcia LJ, Schiavi F, Mancikova V, Comino-Mendez I, Inglada-Perez L, Perez-Martinez M, Ibarz N, Ximenez-Embun P, Lopez-Jimenez E, Maliszewska A, Leton R, Gomez Grana A, Bernal C, Alvarez-Escola C, Rodriguez-Antona C, Opocher G, Munoz J, Megias D, Cascon A, Robledo M (2013) Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways. Endocr Relat Cancer 20(4):477–493. doi:10.1530/erc-12-0183

    Article  PubMed  Google Scholar 

  72. Tömböl Z, Eder K, Kovacs A, Szabó PM, Kulka J, Liko I, Zalatnai A, Racz G, Toth M, Patocs A, Falus A, Racz K, Igaz P (2010) MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol 23(12):1583–1595. doi:10.1038/modpathol.2010.164

    Article  PubMed  Google Scholar 

  73. Patterson E, Webb R, Weisbrod A, Bian B, He M, Zhang L, Holloway AK, Krishna R, Nilubol N, Pacak K, Kebebew E (2012) The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma. Endoc Relat Cancer 19(2):157–166. doi:10.1530/erc-11-0308

    Article  CAS  Google Scholar 

  74. Hamada N, Fujita Y, Kojima T, Kitamoto A, Akao Y, Nozawa Y, Ito M (2012) MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochem Int 60(8):743–750. doi:10.1016/j.neuint.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  75. Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang Q, Cheng P, Tang ZH, Huang F (2013) Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 527(1):26–32. doi:10.1016/j.gene.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  76. Fendler A, Jung M, Stephan C, Erbersdobler A, Jung K, Yousef GM (2013) The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS One 8(11):e80807. doi:10.1371/journal.pone.0080807

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108(8):1659–1667. doi:10.1038/bjc.2013.125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Tanaka H, Sasayama T, Tanaka K, Nakamizo S, Nishihara M, Mizukawa K, Kohta M, Koyama J, Miyake S, Taniguchi M, Hosoda K, Kohmura E (2013) MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol 111(3):273–283. doi:10.1007/s11060-012-1027-9

    Article  CAS  PubMed  Google Scholar 

  79. Szabó PM, Pinter M, Szabó DR, Zsippai A, Patocs A, Falus A, Racz K, Igaz P (2012) Integrative analysis of neuroblastoma and pheochromocytoma genomics data. BMC Med Genomics 5:48. doi:10.1186/1755-8794-5-48

    Article  PubMed Central  PubMed  Google Scholar 

  80. Guan X, Liu Z, Liu H, Yu H, Wang LE, Sturgis EM, Li G, Wei Q (2013) A functional variant at the miR-885-5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer. FASEB J 27(4):1404–1412. doi:10.1096/fj.12-223420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Afanasyeva EA, Mestdagh P, Kumps C, Vandesompele J, Ehemann V, Theissen J, Fischer M, Zapatka M, Brors B, Savelyeva L, Sagulenko V, Speleman F, Schwab M, Westermann F (2011) MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 18(6):974–984. doi:10.1038/cdd.2010.164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Althoff K, Beckers A, Odersky A, Mestdagh P, Koster J, Bray IM, Bryan K, Vandesompele J, Speleman F, Stallings RL, Schramm A, Eggert A, Sprussel A, Schulte JH (2013) MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer 133(5):1064–1073. doi:10.1002/ijc.28091

    Article  CAS  PubMed  Google Scholar 

  83. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141. doi:10.1083/jcb.200908151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Paschou M, Doxakis E (2012) Neurofibromin 1 is a miRNA target in neurons. PLoS One 7(10):e46773. doi:10.1371/journal.pone.0046773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M, Steer CJ, Modiano JF, Subramanian S (2012) Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone 50(1):171–181. doi:10.1016/j.bone.2011.10.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Adler JT, Hottinger DG, Kunnimalaiyaan M, Chen H (2008) Histone deacetylase inhibitors upregulate Notch-1 and inhibit growth in pheochromocytoma cells. Surgery 144(6):956–961. doi:10.1016/j.surg.2008.08.027 (discussion 961–962)

    Article  PubMed Central  PubMed  Google Scholar 

  87. Meyer-Rochow GY, Jackson NE, Conaglen JV, Whittle DE, Kunnimalaiyaan M, Chen H, Westin G, Sandgren J, Stalberg P, Khanafshar E, Shibru D, Duh QY, Clark OH, Kebebew E, Gill AJ, Clifton-Bligh R, Robinson BG, Benn DE, Sidhu SB (2010) MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets. Endocr Relat Cancer 17(3):835–846. doi:10.1677/erc-10-0142

    Article  CAS  PubMed  Google Scholar 

  88. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220. doi:10.1038/cdd.2009.69

    Article  CAS  PubMed  Google Scholar 

  89. Liu J, Zhu H, Yang X, Ge Y, Zhang C, Qin Q, Lu J, Zhan L, Cheng H, Sun X (2014) MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumor Biol 35(5):3975–3979. doi:10.1007/s13277-014-1623-8

    Article  CAS  Google Scholar 

  90. Yang G, Wu D, Zhu J, Jiang O, Shi Q, Tian J, Weng Y (2013) Upregulation of miR-195 increases the sensitivity of breast cancer cells to Adriamycin treatment through inhibition of Raf-1. Oncol Rep 30(2):877–889. doi:10.3892/or.2013.2532

    CAS  PubMed  Google Scholar 

  91. Yang W, Wei J, Sun T, Liu F (2013) Effects of knockdown of miR-210 in combination with ionizing radiation on human hepatoma xenograft in nude mice. Rad Oncol 8:102. doi:10.1186/1748-717x-8-102

    Article  CAS  Google Scholar 

  92. Fraenkel M, Gueorguiev M, Barak D, Salmon A, Grossman AB, Gross DJ (2013) Everolimus therapy for progressive adrenocortical cancer. Endocrine 44(1):187–192. doi:10.1007/s12020-013-9878-1

    Article  CAS  PubMed  Google Scholar 

  93. Szabó DR, Baghy K, Szabó PM, Zsippai A, Marczell I, Nagy Z, Varga V, Eder K, Toth S, Buzas EI, Falus A, Kovalszky I, Patocs A, Racz K, Igaz P (2014) Antitumoral effects of 9-cis retinoic acid in adrenocortical cancer. Cell Mol Life Sci 71(5):917–932. doi:10.1007/s00018-013-1408-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by the Hungarian Scientific Research Fund (OTKA K100295).

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Igaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igaz, P., Igaz, I., Nagy, Z. et al. MicroRNAs in adrenal tumors: relevance for pathogenesis, diagnosis, and therapy. Cell. Mol. Life Sci. 72, 417–428 (2015). https://doi.org/10.1007/s00018-014-1752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1752-7

Keywords

Navigation