Skip to main content

Advertisement

Log in

Are stem cells a potential therapeutic tool in coeliac disease?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Despite the growing understanding of its pathogenesis, the treatment of coeliac disease is still based on a lifelong gluten-free diet that, although efficacious, is troublesome for affected patients, and a definitive cure is still an unmet need. In this regard, the development of new chemical- and biological-derived agents has often resulted in unsatisfactory effects when tested in vivo, probably because of their ability to target only a single pathway, whilst the immunological cascade responsible for tissue injury is complex and redundant. The advent of cellular therapies, mainly based on the use of stem cells, is an emerging area of interest since it has the advantage of a multi-target strategy. Both haematopoietic and mesenchymal stem cells have been employed in the treatment of refractory patients suffering from autoimmune diseases, with promising results. However, the lack of immunogenicity makes mesenchymal stem cells more suitable than their haematopoietic counterpart, since their transplantation may be performed in the absence of a myeloablative conditioning regimen. In addition, mesenchymal stem cells have been shown to harbour strong modulatory effects on almost all cells involved in immune response, together with a potent regenerative action. It is therefore conceivable that over the next few years their therapeutic use will increase as their biological interactions with injured tissues become clearer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CD:

Coeliac disease

EATL:

Enteropathy-associated T cell lymphoma

Fox:

Transcription factor Forkhead box

GFD:

Gluten-free diet

HSC:

Haematopoietic stem cell

HGF:

Hepatocyte growth factor

HLA:

Histocompatibility locus antigen

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

IEL:

Intraepithelial lymphocyte

JAK:

Janus kinase

MSC:

Mesenchymal stem cells

NO:

Nitric oxide

PGE2 :

Prostaglandin E2

STAT:

Signal transducer and activator of transcription

TGF:

Transforming growth factor

TNF:

Tumour necrosing factor

VEGF:

Vascular endothelial growth factor

References

  1. Okamoto R, Watanabe M (2004) Molecular and clinical basis for the regeneration of human gastrointestinal epithelia. J Gastroenterol 39:1–6

    PubMed  Google Scholar 

  2. Koboziev I, Karlsson F, Grisham MB (2010) Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann NY Acad Sci 1207:E86–E93

    PubMed Central  PubMed  Google Scholar 

  3. Sollid LM, Qiao SW, Anderson RP et al (2012) Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460

    PubMed Central  PubMed  Google Scholar 

  4. Dieterich W, Ehnis T, Bauer M et al (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801

    CAS  PubMed  Google Scholar 

  5. Di Sabatino A, Corazza GR (2009) Coeliac disease. Lancet 373:1480–1493

    PubMed  Google Scholar 

  6. Abadie V, Sollid LM, Barreiro LB et al (2011) Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 29:493–525

    CAS  PubMed  Google Scholar 

  7. Van de Kamer J, Weijers H, Dicke W (1953) Coeliac disease. Some experiments on the cause of the harmful effect of wheat gliadin. Acta Paediatr Scand 42:223–231

    Google Scholar 

  8. Lee AR, Ng DL, Diamond B et al (2012) Living with coeliac disease: survey results from the U.S.A. J Hum Nutr Diet 25:233–238

    CAS  PubMed  Google Scholar 

  9. Biagi F, Gobbi P, Marchese A et al (2014) Low incidence but poor prognosis of complicated coeliac disease: a retrospective multicentre study. Dig Liver Dis 46:227–230

    PubMed  Google Scholar 

  10. Marietta EV, Murray JA (2012) Animal models to study gluten sensitivity. Semin Immunopathol 34:497–511

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Kaukinen K, Lindfors K, Maki M (2014) Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol 11:36–44

    CAS  PubMed  Google Scholar 

  12. Dazzi F, van Laar JM, Cope A et al (2007) Cell therapy for autoimmune diseases. Arthritis Res Ther. 9:206. doi:10.1186/ar2128

    PubMed Central  PubMed  Google Scholar 

  13. Burt RK, Loh Y, Pearce W et al (2008) Clinical applications of blood-derived and marrow-derived stem cells for non-malignant diseases. JAMA 299:925–936

    CAS  PubMed  Google Scholar 

  14. Farge D, Labopin M, Tyndall A et al (2010) Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 95:284–292

    PubMed Central  PubMed  Google Scholar 

  15. Andoh A, Bamba S, Fujiyama Y et al (2005) Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J Gastroenterol 40:1089–1099

    PubMed  Google Scholar 

  16. Brittan M, Chance V, Elia G et al (2005) A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology 128:1984–1995

    PubMed  Google Scholar 

  17. Khalil PN, Weiler V, Nelson PJ et al (2007) Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology 132:944–954

    PubMed  Google Scholar 

  18. Matsumoto T, Okamoto R, Yajima T et al (2005) Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128:1851–1867

    CAS  PubMed  Google Scholar 

  19. Mastrandrea F, Semeraro FP, Coradduzza G et al (2008) CD34+ hemopoietic precursor and stem cells traffic in peripheral blood of celiac patients is significantly increased but not directly related to epithelial damage severity. Eur Ann Allergy Clin Immunol 40:90–103

    CAS  PubMed  Google Scholar 

  20. Ciccocioppo R, Di Sabatino A, Parroni R et al (2001) Increased enterocyte apoptosis and Fas-Fas ligand system in celiac disease. Am J Clin Pathol 115:494–503

    CAS  PubMed  Google Scholar 

  21. Burt RK, Testori A, Craig R et al (2008) Hematopoietic stem cell transplantation for autoimmune diseases: what have we learned? J Autoimmun 30:116–120

    PubMed  Google Scholar 

  22. de Kleer I, Vastert B, Klein M et al (2006) Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 107:1696–1702

    PubMed  Google Scholar 

  23. Al-Toma A, Mulder CJJ (2007) Stem cell transplantation for the treatment of gastrointestinal diseases—current applications and future perspectives. Aliment Pharmacol Ther 26(Suppl. 2):77–89

    PubMed  Google Scholar 

  24. Al-Toma A, Visser O, van Roessel HM et al (2007) Autologous hematopoietic stem cell transplantation in refractory celiac with aberrant T-cells. Blood 109:2243–2249

    CAS  PubMed  Google Scholar 

  25. Tack GJ, Wondergem MJ, Al-Toma A et al (2011) Auto-SCT in refractory celiac disease type II patients unresponsive to cladribine therapy. Bone Marrow Transplant 46:840–846

    CAS  PubMed  Google Scholar 

  26. Al-Toma A, Verbeek WH, Visser OJ et al (2007) Disappointing outcome of autologous stem cell transplantation for enteropathy-associated T-cell lymphoma. Dig Liver Dis 39:634–641

    CAS  PubMed  Google Scholar 

  27. Malamut G, Cellier C (2013) Refractory coeliac disease. Curr Opin Oncol 25:445–451

    PubMed  Google Scholar 

  28. Verkarre V, Romana SP, Cellier C et al (2003) Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology 125:40–46

    PubMed  Google Scholar 

  29. Cellier C, Patey N, Mauvieux L et al (1998) Abnormal intestinal intraepithelial lymphocytes in refractory sprue. Gastroenterology 114:471–481

    CAS  PubMed  Google Scholar 

  30. Schmitz F, Tjon JM, Lai Y et al (2013) Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut 62:509–519

    CAS  PubMed  Google Scholar 

  31. Malamut G, Machhour R, Montcuquet N et al (2010) IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 120:2131–2143

    PubMed Central  CAS  PubMed  Google Scholar 

  32. DePaolo RW, Abadie V, Tang F et al (2011) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471:220–224

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Zanzi D, Stefanile R, Santagata S et al (2011) IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in celiac disease. Am J Gastroenterol 106:1308–1317

    CAS  PubMed  Google Scholar 

  34. Hmida NB, Ben Ahmed M, Moussa A et al (2012) Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gatroenterol. 107:604–611

    CAS  Google Scholar 

  35. Korneychuk N, Ramiro-Puig E, Ettersperger J et al (2014) Interleukin 15 and CD4+ T Cells cooperate to promote small intestinal enteropathy in response to dietary antigen. Gastroenterology 146:1017–1027

    CAS  PubMed  Google Scholar 

  36. Kline RM, Neudorf SM, Baron HI (2007) Correction of celiac disease after allogeneic hematopoietic stem cell transplantation for acute myelogenous leukemia. Pediatrics 120:e1120–e1122

    PubMed  Google Scholar 

  37. Hoekstra JH, Groot-Loonen JJ, van der Weij A et al (2010) Successful treatment of celiac disease by allogeneic haematopoietic stem cell transplantation. J Pediatr Gastroenterol Nutr 51:793–794

    PubMed  Google Scholar 

  38. Ciccocioppo R, Bernardo ME, Russo ML et al (2013) Allogeneic hematopoietic stem cell transplantation may restore gluten tolerance in patients with celiac disease. J Pediatr Gastroenterol Nutr 56:422–427

    CAS  PubMed  Google Scholar 

  39. Ben-Horin S, Polak-Charcon S, Barshack I et al (2013) Celiac disease resolution after allogeneic bone marrow transplantation is associated with absence of gliadin-specific memory response by donor-derived intestinal T-cells. J Clin Immunol 33:1395–1402

    CAS  PubMed  Google Scholar 

  40. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  41. Ding D-C, Shyu W-C, Lin S-Z (2011) Mesenchymal stem cells. Cell Transplant 20:5–14

    PubMed  Google Scholar 

  42. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Human Gene Ther 21:1045–1056

    CAS  Google Scholar 

  43. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  44. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  45. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    CAS  PubMed  Google Scholar 

  46. Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann NY Acad Sci 1176:101–117

    CAS  PubMed  Google Scholar 

  47. Wei Y, Nie Y, Lai J et al (2009) Comparison of the population capacity of hematopoietic and mesenchymal stem cells in experimental colitis rat model. Transplantation 88:42–48

    PubMed Central  PubMed  Google Scholar 

  48. Yabana T, Arimura Y, Tanaka H et al (2009) Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. J Pathol 218:350–359

    CAS  PubMed  Google Scholar 

  49. Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    PubMed  Google Scholar 

  50. Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    CAS  PubMed  Google Scholar 

  51. Barry FP, Murphy JM, English K, Mahon BP (2005) Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 14:252–265

    CAS  PubMed  Google Scholar 

  52. Sundin M, Ringdén O, Sundberg B et al (2007) No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92:1208–1215

    CAS  PubMed  Google Scholar 

  53. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591

    PubMed  Google Scholar 

  54. Burr S, Dazzi F, Garden OA (2013) Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell Biol 9:12–18

    Google Scholar 

  55. Gonzalez MA, Gonzalez-Rey E, Rico L et al (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136:978–989

    PubMed  Google Scholar 

  56. Prockop DJ, Kota DJ, Bazhanov N et al (2010) Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14:2190–2199

    PubMed Central  PubMed  Google Scholar 

  57. Siegel G, Schäfer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49

    PubMed  Google Scholar 

  58. Fournel S, Aguerre-Girr M, Huc X et al (2000) Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164:6100–6104

    CAS  PubMed  Google Scholar 

  59. Riteau B, Menier C, Khalil-Daher I et al (2001) HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol 13:193–201

    CAS  PubMed  Google Scholar 

  60. Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222

    CAS  PubMed  Google Scholar 

  61. Ketroussi F, Giuliani M, Bahri R et al (2011) Lymphocyte cell-cycle inhibition by HLA-G is mediated by phosphatase SHP-2 and acts on the mTOR pathway. PLoS ONE 6:e22776

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Ristich V, Liang S, Zhang W et al (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    CAS  PubMed  Google Scholar 

  63. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    PubMed  Google Scholar 

  64. Parekkedan B, Tilles AW, Yarmush ML (2008) Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells 26:1913–1919

    Google Scholar 

  65. Ciccocioppo R, Russo ML, Bernardo ME et al (2012) Mesenchymal stromal cell infusions as rescue therapy for corticosteroid-refractory adult autoimmune enteropathy. Mayo Clin Proc 87:909–914

    PubMed Central  PubMed  Google Scholar 

  66. Meresse B, Malamut G, Cerf-Bensussan N (2012) Celiac disease: an immunological jigsaw. Immunity 36:907–919

    CAS  PubMed  Google Scholar 

  67. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    CAS  PubMed  Google Scholar 

  68. Kyung JM, Klaus C, Kaemmerer E et al (2013) Intestinal barrier: molecular pathways and modifiers. World J Gastroenterol 4:94–99

    Google Scholar 

  69. Ciccocioppo R, Finamore A, Ara C et al (2006) Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol 125:502–511

    CAS  PubMed  Google Scholar 

  70. Drago S, El Asmar R, Di Pierro M et al (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41:408–419

    CAS  PubMed  Google Scholar 

  71. Clemente MG, De Virgiliis S, Kang JS et al (2003) Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 52:218–223

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Paterson BM, Lammers KM, Arrieta MC et al (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766

    CAS  PubMed  Google Scholar 

  73. Leffler DA, Kelly CP, Abdallah HZ et al (2012) A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol 107:1554–1562

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Kelly CP, Green PH, Murray JA et al (2013) Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 37:252–262

    CAS  PubMed  Google Scholar 

  75. Sémont A, Mouiseddine M, François A et al (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17:952–961

    PubMed  Google Scholar 

  76. Weil BR, Markel TA, Herrmann JL et al (2009) Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms. Surgery 146:190–197

    PubMed  Google Scholar 

  77. Tayman C, Uckan D, Kilic E et al (2011) Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res 70:489–494

    PubMed  Google Scholar 

  78. Cheroutre H, Lambolez F, Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11:445–456

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Di Sabatino A, Ciccocioppo R, D’Alò S et al (2001) Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 49:380–386

    PubMed  Google Scholar 

  80. Olaussen RW, Johansen FE, Lundin KE et al (2002) Interferon-gamma-secreting T cells localize to the epithelium in coeliac disease. Scand J Immunol 56:652–664

    CAS  PubMed  Google Scholar 

  81. Ciccocioppo R, Di Sabatino A, Parroni R et al (2000) Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin Exp Immunol 120:235–240

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Meresse B, Chen Z, Ciszewski C et al (2004) Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366

    CAS  PubMed  Google Scholar 

  83. Sotiropoulou PA, Perez SA, Gritzapis AD et al (2006) Interaction between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    PubMed  Google Scholar 

  84. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    CAS  PubMed  Google Scholar 

  85. Spaggiari GM, Capobianco A, Abdelrazik H et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    CAS  PubMed  Google Scholar 

  86. Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    CAS  PubMed  Google Scholar 

  87. Ciccocioppo R, Camarca A, Cangemi GC et al (2014) Tolerogenic effect of mesenchymal stromal cells on gliadin-specific T lymphocytes in celiac disease. Cytotherapy 16:1080–1091

    CAS  PubMed  Google Scholar 

  88. Prigione I, Benvenuto F, Bocca P et al (2009) Reciprocal interactions between human mesenchymal stem cells and γö T cells or invariant Natural Killer T cells. Stem Cells 27:693–702

    CAS  PubMed  Google Scholar 

  89. Dunne MR, Elliott L, Hussey S et al (2013) Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS ONE 8:e76008. doi:10.1371/journal.pone.0076008

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Sollid LM, Markussen G, Ek J et al (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 169:345–350

    CAS  PubMed  Google Scholar 

  91. Shan L, Molberg O, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    CAS  PubMed  Google Scholar 

  92. Beitnes AC, Ráki M, Brottveit M et al (2012) Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge. PLoS ONE 7(3):e33556. doi:10.1371/journal.pone.0033556

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Jung YJ, Ju SY, Yoo ES et al (2007) MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy 9:451–458

    CAS  PubMed  Google Scholar 

  94. Spaggiari GM, Abdelrazik H, Becchetti F et al (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583

    CAS  PubMed  Google Scholar 

  95. English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115:50–58

    CAS  PubMed  Google Scholar 

  96. Ramasamy R, Fazekasova H, Lam EW et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76

    PubMed  Google Scholar 

  97. Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

    CAS  PubMed  Google Scholar 

  98. Li Y-P, Paczesny S, Lauret E et al (2008) Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol 180:1598–1608

    CAS  PubMed  Google Scholar 

  99. Zhang B, Liu R, Shi D et al (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113:46–57

    CAS  PubMed  Google Scholar 

  100. Wang Q, Sun B, Wang D et al (2008) Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol 68:607–615

    CAS  PubMed  Google Scholar 

  101. Bai L, Lennon DP, Eaton V et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203

    PubMed Central  PubMed  Google Scholar 

  102. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    CAS  PubMed  Google Scholar 

  103. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  104. Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    CAS  PubMed  Google Scholar 

  105. Fina D, Sarra M, Caruso R et al (2008) Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57:887–892

    CAS  PubMed  Google Scholar 

  106. Bodd M, Ráki M, Tollefsen S et al (2010) HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol 3:594–601. doi:10.1038/mi.2010.36

    CAS  PubMed  Google Scholar 

  107. Croitoru-Lamoury J, Lamoury FMJ, Caristo M et al (2011) Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS ONE 6:e14698

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    CAS  PubMed  Google Scholar 

  109. Bingisser RM, Tilbrook PA, Holt PG et al (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734

    CAS  PubMed  Google Scholar 

  110. Glennie S, Soeiro I, Dyson PJ et al (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    CAS  PubMed  Google Scholar 

  111. Benvenuto F, Ferrari S, Gerdoni E et al (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760

    CAS  PubMed  Google Scholar 

  112. Nasef A, Mathieu N, Chapel A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    CAS  PubMed  Google Scholar 

  113. Carosella ED, Moreau P, Le Maoult J et al (2003) HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol 81:199–252

    CAS  PubMed  Google Scholar 

  114. Ryan JM, Barry F, Murphy JM et al (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363

    PubMed Central  CAS  PubMed  Google Scholar 

  115. English K, Barry FP, Field-Corbett CP et al (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110:91–100

    CAS  PubMed  Google Scholar 

  116. Beyth S, Borovsky Z, Mevorach D et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    CAS  PubMed  Google Scholar 

  117. Chabannes D, Hill M, Merieau E et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110:3691–3694

    CAS  PubMed  Google Scholar 

  118. González MA, Gonzalez-Rey E, Rico L et al (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019

    PubMed  Google Scholar 

  119. Caruso R, Marafini I, Sedda S et al (2014) Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients. Clin Sci 126:451–458

    CAS  PubMed  Google Scholar 

  120. Jones S, Horwood N, Cope A et al (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179:2824–2831

    CAS  PubMed  Google Scholar 

  121. Ren G, Su J, Zhang L et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962

    CAS  PubMed  Google Scholar 

  122. Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    CAS  PubMed  Google Scholar 

  123. Ji JF, He BP, Dheen ST et al (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427

    CAS  PubMed  Google Scholar 

  124. Troncone R, Discepolo V (2014) Celiac disease and autoimmunity. J Pediatr Gastroenterol Nutr 59:S9–S11

    CAS  PubMed  Google Scholar 

  125. Tang K, Xiao X, Liu D et al (2014) Autografting of bone marrow mesenchymal stem cells alleviates streptozotocin-induced diabetes in miniature pigs: real-time tracing with MRI in vivo. Int J Mol Med 33:1469–1476

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Lee RH, Seo MJ, Reger RL et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103:17438–17443

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Madec AM, Mallone R, Afonso G et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–1399

    CAS  PubMed  Google Scholar 

  128. Fiorina P, Jurewicz M, Augello A et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Pabst O, Mowat AM (2012) Oral tolerance to food protein. Mucosal Immunol 5:232–239

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Augello A, Tasso R, Negrini SM et al (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186

    CAS  PubMed  Google Scholar 

  131. Maccario R, Podestà M, Moretta A et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory-suppressive phenotype. Haematologica 90:516–525

    CAS  PubMed  Google Scholar 

  132. Di Ianni M, Del Papa B, De Ioanni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–318

    PubMed  Google Scholar 

  133. Prevosto C, Zancolli M, Carnevali P et al (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92:881–888

    CAS  PubMed  Google Scholar 

  134. Ciccocioppo R, Bernardo ME, Sgarella A et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 60:788–798

    PubMed  Google Scholar 

  135. Sundin M, D’arcy P, Johansson CC et al (2011) Multipotent mesenchymal stromal cells express FoxP3: a marker for the immunosuppressive capacity? J Immunother 34:336–342

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Ichii M, Oritani K, Yokota T et al (2008) Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using mesenchymal stem cells as a supportive microenvironment. Exp Hematol 36:587–597

    CAS  PubMed  Google Scholar 

  137. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    CAS  PubMed  Google Scholar 

  138. Tabera S, Perez-Simon JA, Diez-Campelo M et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93:1301–1309

    CAS  PubMed  Google Scholar 

  139. Rasmusson I, Le Blanc K, Sundberg B et al (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65:336–343

    CAS  PubMed  Google Scholar 

  140. Traggiai E, Volpi S, Schena F et al (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematous patients. Stem Cells 26:562–569

    CAS  PubMed  Google Scholar 

  141. Schena F, Gambini C, Gregorio A et al (2010) Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62:2776–2786

    CAS  PubMed  Google Scholar 

  142. Yu J, Zheng C, Ren X et al (2010) Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol 72:242–249

    CAS  PubMed  Google Scholar 

  143. Rafei M, Hsieh J, Fortier S et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998

    CAS  PubMed  Google Scholar 

  144. Singh UP, Singh NP, Singh B et al (2011) Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci 2:993–1008

    Google Scholar 

  145. Lee RH, Pulin AA, Seo MJ et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Hee Yoo K, Keun Jang I, Woo Lee M et al (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259:150–156

    Google Scholar 

  147. Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    CAS  PubMed  Google Scholar 

  148. Sarugaser R, Lickorish D, Baksh D et al (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    PubMed  Google Scholar 

  149. Tsai MS, Lee JL, Chang YJ et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    PubMed  Google Scholar 

  150. Yamahara K, Harada K, Ohshima M et al (2014) Comparison of angiogenic, cytoprotective, and immunosuppressive properties of human amnion- and chorion-derived mesenchymal stem cells. PLoS ONE 9(2):e88319. doi:10.1371/journal.pone.0088319

    PubMed Central  PubMed  Google Scholar 

  151. Parolini O, Alviano F, Bagnara GP et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311

    PubMed  Google Scholar 

  152. Barlow S, Brooke G, Chatterjee K et al (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17:1095–1107

    CAS  PubMed  Google Scholar 

  153. Du MR, Guo PF, Piao HL et al (2014) Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 192:1502–1511

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant of the European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123).

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachele Ciccocioppo or Peter Kruzliak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccocioppo, R., Cangemi, G.C., Roselli, E.A. et al. Are stem cells a potential therapeutic tool in coeliac disease?. Cell. Mol. Life Sci. 72, 1317–1329 (2015). https://doi.org/10.1007/s00018-014-1797-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1797-7

Keywords

Navigation