Skip to main content

Advertisement

Log in

2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies have revealed that the members of an ancient family of nonheme Fe2+/2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O2 are the obligatory substrates and Fe2+ a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4:e6348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Munkacsy E, Rea SL (2014) The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 56:221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  CAS  PubMed  Google Scholar 

  6. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K (2014) Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 16:45–65

    Article  CAS  PubMed  Google Scholar 

  9. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20:659–672

    Article  CAS  PubMed  Google Scholar 

  12. Singleton RS, Liu-Yi P, Formenti F, Ge W, Sekirnik R, Fischer R, Adam J, Pollard PJ, Wolf A, Thalhammer A, Loenarz C, Flashman E, Yamamoto A, Coleman ML, Kessler BM, Wappner P, Schofield CJ, Ratcliffe PJ, Cockman ME (2014) OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proc Natl Acad Sci USA 111:4031–4036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hausinger RP (2004) FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39:21–68

    Article  CAS  PubMed  Google Scholar 

  14. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. J Inorg Biochem 100:644–669

    Article  CAS  PubMed  Google Scholar 

  15. Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  16. Mole DR (2010) Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid Redox Signal 12:445–458

    Article  CAS  PubMed  Google Scholar 

  17. Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591:2027–2042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Aik W, McDonough MA, Thalhammer A, Chowdhury R, Schofield CJ (2012) Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol 22:691–700

    Article  CAS  PubMed  Google Scholar 

  19. Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J (2004) The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. J Biol Chem 279:52255–52261

    Article  CAS  PubMed  Google Scholar 

  20. McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ (2006) Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 103:9814–9819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F, Rose NR, Offer J, Scheinost JC, Borowski T, Sundstrom M, Schofield CJ, Oppermann U (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448:87–91

    Article  CAS  PubMed  Google Scholar 

  22. Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, Shi YG, Zhu J, Wang P, Xu Y (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S (2006) Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 235:2449–2459

    Article  CAS  PubMed  Google Scholar 

  24. Upadhyay AK, Horton JR, Zhang X, Cheng X (2011) Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr Opin Struct Biol 21:750–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schofield CJ, Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9:722–731

    Article  CAS  PubMed  Google Scholar 

  26. Hewitson KS, Granatino N, Welford RW, McDonough MA, Schofield CJ (2005) Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling. Philos Trans A Math Phys Eng Sci 363:807–828

    Article  CAS  PubMed  Google Scholar 

  27. Ye S, Riplinger C, Hansen A, Krebs C, Bollinger JM Jr, Neese F (2012) Electronic structure analysis of the oxygen-activation mechanism by Fe(II)- and α-ketoglutarate (αKG)-dependent dioxygenases. Chemistry 18:6555–6567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Monne M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G (2013) The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 45:1–13

    Article  CAS  PubMed  Google Scholar 

  29. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  CAS  PubMed  Google Scholar 

  30. Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287:14615–14620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    PubMed Central  PubMed  Google Scholar 

  32. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388

    PubMed Central  PubMed  Google Scholar 

  33. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85

    Article  CAS  PubMed  Google Scholar 

  34. Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532

    Article  CAS  PubMed  Google Scholar 

  35. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, Watson DG, Gottlieb E (2007) Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cervera AM, Bayley JP, Devilee P, McCreath KJ (2009) Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 8:89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, Quezado M, Smith WI Jr, Jahromi MS, Xekouki P, Szarek E, Walker RL, Lasota J, Raffeld M, Klotzle B, Wang Z, Jones L, Zhu Y, Wang Y, Waterfall JJ, O’Sullivan MJ, Bibikova M, Pacak K, Stratakis C, Janeway KA, Schiffman JD, Fan JB, Helman L, Meltzer PS (2013) Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:648–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, De Reynies A, Gimenez-Roqueplo AP, Favier J (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752

    Article  CAS  PubMed  Google Scholar 

  40. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123:3652–3658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  CAS  PubMed  Google Scholar 

  45. Smirnova NA, Hushpulian DM, Speer RE, Gaisina IN, Ratan RR, Gazaryan IG (2012) Catalytic mechanism and substrate specificity of HIF prolyl hydroxylases. Biochemistry (Mosc) 77:1108–1119

    Article  CAS  Google Scholar 

  46. Sanchez-Fernandez EM, Tarhonskaya H, Al-Qahtani K, Hopkinson RJ, McCullagh JS, Schofield CJ, Flashman E (2013) Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochem J 449:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shmakova A, Batie M, Druker J, Rocha S (2014) Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 462:385–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhou X, Sun H, Chen H, Zavadil J, Kluz T, Arita A, Costa M (2010) Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res 70:4214–4221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283:36542–36552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochem J 416:387–394

    Article  CAS  PubMed  Google Scholar 

  51. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106:4260–4265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-α-prolyl-4-hydroxylases. Biochem J 381:761–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Munck E, Que L Jr (2010) Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective. Inorg Chem 49:3618–3628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Flashman E, Davies SL, Yeoh KK, Schofield CJ (2010) Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J 427:135–142

    Article  CAS  PubMed  Google Scholar 

  55. Monfort A, Wutz A (2013) Breathing-in epigenetic change with vitamin C. EMBO Rep 14:337–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, Zhang D, Huang H, Gao J, Li Z, Jiao Y, Li C, Liu S, Wu D, Gu W, Yang YG, Xu GL, Wang H (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135:10396–10403

    Article  CAS  PubMed  Google Scholar 

  57. Kuiper C, Dachs GU, Currie MJ, Vissers MC (2014) Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med 69:308–317

    Article  CAS  PubMed  Google Scholar 

  58. Hickok JR, Vasudevan D, Antholine WE, Thomas DD (2013) Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases. J Biol Chem 288:16004–16015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470–3481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1α protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hagen T (2012) Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips. Biochem Res Int 2012:436981

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Cho EA, Song HK, Lee SH, Chung BH, Lim HM, Lee MK (2013) Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases. J Cell Biochem 114:864–873

    Article  CAS  PubMed  Google Scholar 

  63. Triantafyllou A, Liakos P, Tsakalof A, Chachami G, Paraskeva E, Molyvdas PA, Georgatsou E, Simos G, Bonanou S (2007) The flavonoid quercetin induces hypoxia-inducible factor-1α (HIF-1α) and inhibits cell proliferation by depleting intracellular iron. Free Radic Res 41:342–356

    Article  CAS  PubMed  Google Scholar 

  64. Topol IA, Nemukhin AV, Salnikow K, Cachau RE, Abashkin YG, Kasprzak KS, Burt SK (2006) Quantum chemical modeling of reaction mechanism for 2-oxoglutarate dependent enzymes: effect of substitution of iron by nickel and cobalt. J Phys Chem A 110:4223–4228

    Article  CAS  PubMed  Google Scholar 

  65. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ (2011) Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 40:4364–4397

    Article  CAS  PubMed  Google Scholar 

  66. Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Ding H, Yan CZ, Shi H, Zhao YS, Chang SY, Yu P, Wu WS, Zhao CY, Chang YZ, Duan XL (2011) Hepcidin is involved in iron regulation in the ischemic brain. PLoS One 6:e25324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Nandal A, Ruiz JC, Subramanian P, Ghimire-Rijal S, Sinnamon RA, Stemmler TL, Bruick RK, Philpott CC (2011) Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab 14:647–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Jeltsch A (2013) Oxygen, epigenetic signaling, and the evolution of early life. Trends Biochem Sci 38:172–176

    Article  CAS  PubMed  Google Scholar 

  72. Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PW, Ratcliffe PJ, Schofield CJ (2011) The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 12:63–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Myllylä R, Tuderman L, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur J Biochem 80:349–357

    Article  PubMed  Google Scholar 

  74. Chowdhury R, Sekirnik R, Brissett NC, Krojer T, Ho CH, Ng SS, Clifton IJ, Ge W, Kershaw N, Fox GC, Muniz JR, Vollmar M, Phillips C, Pilka ES, Kavanagh KL, von Delft F, Oppermann U, McDonough MA, Doherty AJ, Schofield CJ (2014) Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 510:422–426

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  CAS  PubMed  Google Scholar 

  76. Chedin F (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 101:255–285

    Article  CAS  PubMed  Google Scholar 

  77. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Minor EA, Court BL, Young JI, Wang G (2013) Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem 288:13669–13674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Zhao B, Yang Y, Wang X, Chong Z, Yin R, Song SH, Zhao C, Li C, Huang H, Sun BF, Wu D, Jin KX, Song M, Zhu BZ, Jiang G, Rendtlew Danielsen JM, Xu GL, Yang YG, Wang H (2014) Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism. Nucleic Acids Res 42:1593–1605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, Kuan S, Edsall LE, Zhao BS, Xu GL, He C, Ren B (2014) 5mC Oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD (2014) Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol 15:R81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, Meehan RR (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Wu H, D’Alessio AC, Ito S, Xia K, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, Parlato C, Oliviero S (2013) Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol 14:R91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332–1342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Wu H, Zhang Y (2011) Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells. Cell Cycle 10:2428–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  96. Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    Article  CAS  PubMed  Google Scholar 

  98. Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U (2014) The roles of Jumonji-type oxygenases in human disease. Epigenomics 6:89–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364–372

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci 38:546–555

    Article  CAS  PubMed  Google Scholar 

  102. Nijwening JH, Geutjes EJ, Bernards R, Beijersbergen RL (2011) The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS One 6:e25235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539–3554

    Article  CAS  PubMed  Google Scholar 

  106. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  108. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  109. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  CAS  PubMed  Google Scholar 

  110. Jaakkola PM, Rantanen K (2013) The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3. Biol Chem 394:449–457

    Article  CAS  PubMed  Google Scholar 

  111. Myllyharju J, Koivunen P (2013) Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles. Biol Chem 394:435–448

    Article  CAS  PubMed  Google Scholar 

  112. Wong BW, Kuchnio A, Bruning U, Carmeliet P (2013) Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci 38:3–11

    Article  CAS  PubMed  Google Scholar 

  113. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Koivunen P, Hirsilä M, Gunzler V, Kivirikko KI, Myllyharju J (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 279:9899–9904

    Article  CAS  PubMed  Google Scholar 

  117. Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX, Tian YM, Kessler BM, Schofield CJ, Ratcliffe PJ (2012) The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 13:251–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103:14767–14772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S, Bilton RL, Brismar K, Whitelaw ML, Pereira T, Gorman JJ, Ericson J, Peet DJ, Lendahl U, Poellinger L (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105:3368–3373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Bracken CP, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376–1393

    Article  CAS  PubMed  Google Scholar 

  121. Aragones J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9:11–22

    Article  CAS  PubMed  Google Scholar 

  122. Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M (2005) Human HIF-3α4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 19:1396–1406

    Article  CAS  PubMed  Google Scholar 

  123. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37:364–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878

    Article  CAS  PubMed  Google Scholar 

  125. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Kivirikko KI, Prockop DJ (1967) Enzymatic hydroxylation of proline and lysine in protocollagen. Proc Natl Acad Sci USA 57:782–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Kivirikko KI, Myllylä R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 3:1609–1617

    CAS  PubMed  Google Scholar 

  128. Vranka JA, Sakai LY, Bächinger HP (2004) Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 279:23615–23621

    Article  CAS  PubMed  Google Scholar 

  129. Myllylä R, Wang C, Heikkinen J, Juffer A, Lampela O, Risteli M, Ruotsalainen H, Salo A, Sipilä L (2007) Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol 212:323–329

    Article  PubMed  CAS  Google Scholar 

  130. Kivirikko KI, Myllyharju J (1998) Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol 16:357–368

    Article  CAS  PubMed  Google Scholar 

  131. Ruotsalainen H, Sipilä L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, Fässler R, Myllylä R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 119:625–635

    Article  CAS  PubMed  Google Scholar 

  132. Salo AM, Wang C, Sipilä L, Sormunen R, Vapola M, Kervinen P, Ruotsalainen H, Heikkinen J, Myllylä R (2006) Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling. J Cell Physiol 207:644–653

    Article  CAS  PubMed  Google Scholar 

  133. Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM (2006) Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 26:5237–5248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Katz MJ, Acevedo JM, Loenarz C, Galagovsky D, Liu-Yi P, Perez-Pepe M, Thalhammer A, Sekirnik R, Ge W, Melani M, Thomas MG, Simonetta S, Boccaccio GL, Schofield CJ, Cockman M, Ratcliffe PJ, Wappner P (2014) Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc Natl Acad Sci USA 111:4025–4030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Wehner KA, Schutz S, Sarnow P (2010) OGFOD1, a novel modulator of eukaryotic translation initiation factor 2α phosphorylation and the cellular response to stress. Mol Cell Biol 30:2006–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Shivange G, Kodipelli N, Monisha M, Anindya R (2014) A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair. J Biol Chem 289:35939–35952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Loenarz C, Sekirnik R, Thalhammer A, Ge W, Spivakovsky E, Mackeen MM, McDonough MA, Cockman ME, Kessler BM, Ratcliffe PJ, Wolf A, Schofield CJ (2014) Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci USA 111:4019–4024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Christensen BC, Houseman ES, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20:1164–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, MuTHER Consortium, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629

  141. Heyn H, Moran S, Esteller M (2013) Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics 8:28–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22:R7–R15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Wood JG, Hillenmeyer S, Lawrence C, Chang C, Hosier S, Lightfoot W, Mukherjee E, Jiang N, Schorl C, Brodsky AS, Neretti N, Helfand SL (2010) Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9:971–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22:42–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A (2014) Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J Mol Med (Berl) 92:1035–1043

    Article  CAS  Google Scholar 

  148. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042

    Article  CAS  PubMed  Google Scholar 

  149. Salminen A, Kaarniranta K (2009) SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 378:6–9

    Article  CAS  PubMed  Google Scholar 

  150. Shen M, Zhou T, Xie W, Ling T, Zhu Q, Zong L, Lyu G, Gao Q, Zhang F, Tao W (2013) The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation. PLoS One 8:e62668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Koch S, Garcia Gonzalez O, Assfalg R, Schelling A, Schäfer P, Scharffetter-Kochanek K, Iben S (2014) Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth. Cell Cycle 13:2029–2037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313

    Article  CAS  PubMed  Google Scholar 

  153. Tanaka Y, Okamoto K, Teye K, Umata T, Yamagiwa N, Suto Y, Zhang Y, Tsuneoka M (2010) JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J 29:1510–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    Article  CAS  PubMed  Google Scholar 

  155. Cheutin T, Cavalli G (2014) Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev 25:30–37

    Article  CAS  PubMed  Google Scholar 

  156. Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JD (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14:161–172

    Article  CAS  PubMed  Google Scholar 

  157. Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10:980–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  CAS  PubMed  Google Scholar 

  159. Estaras C, Fueyo R, Akizu N, Beltran S, Martinez-Balbas MA (2013) RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Biol Cell 24:351–360

    Article  PubMed Central  PubMed  Google Scholar 

  160. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094

    Article  PubMed  CAS  Google Scholar 

  161. Lee HY, Choi K, Oh H, Park YK, Park H (2014) HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 37:43–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M, Maertens G, Banck M, Zhou MM, Walsh MJ, Peters G, Gil J (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One 4:e5622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030–1043

    Article  CAS  PubMed  Google Scholar 

  166. Parsons PA (2003) From the stress theory of aging to energetic and evolutionary expectations for longevity. Biogerontology 4:63–73

    Article  PubMed  Google Scholar 

  167. Murakami S (2006) Stress resistance in long-lived mouse models. Exp Gerontol 41:1014–1019

    Article  CAS  PubMed  Google Scholar 

  168. Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60:1369–1377

    Article  PubMed  Google Scholar 

  169. Philipp EE, Abele D (2010) Masters of longevity: lessons from long-lived bivalves—a mini-review. Gerontology 56:55–65

    Article  CAS  PubMed  Google Scholar 

  170. Yu C, Li Y, Holmes A, Szafranski K, Faulkes CG, Coen CW, Buffenstein R, Platzer M, de Magalhaes JP, Church GM (2011) RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One 6:e26729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Shams I, Avivi A, Nevo E (2004) Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1α. Proc Natl Acad Sci USA 101:9698–9703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139–152

    Article  CAS  PubMed  Google Scholar 

  173. Schneider M, Van Geyte K, Fraisl P, Kiss J, Aragones J, Mazzone M, Mairbäurl H, De Bock K, Jeoung NH, Mollenhauer M, Georgiadou M, Bishop T, Roncal C, Sutherland A, Jordan B, Gallez B, Weitz J, Harris RA, Maxwell P, Baes M, Ratcliffe P, Carmeliet P (2010) Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138:1143–1154

    Article  CAS  PubMed  Google Scholar 

  174. Bigham AW, Lee FS (2014) Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev 28:2189–2204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Song D, Li LS, Arsenault PR, Tan Q, Bigham AW, Heaton-Johnson KJ, Master SR, Lee FS (2014) Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing. J Biol Chem 289:14656–14665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Ndubuizu OI, Chavez JC, LaManna JC (2009) Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am J Physiol Regul Integr Comp Physiol 297:R158–R165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Rabie T, Kunze R, Marti HH (2011) Impaired hypoxic response in senescent mouse brain. Int J Dev Neurosci 29:655–661

    Article  CAS  PubMed  Google Scholar 

  178. Rohrbach S, Teichert S, Niemann B, Franke C, Katschinski DM (2008) Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression. Biogerontology 9:169–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Kuschel A, Simon P, Tug S (2012) Functional regulation of HIF-1α under normoxia -is there more than post-translational regulation? J Cell Physiol 227:514–524

    Article  CAS  PubMed  Google Scholar 

  180. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    Article  CAS  PubMed  Google Scholar 

  181. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Fitzpatrick SF, Tambuwala MM, Bruning U, Schaible B, Scholz CC, Byrne A, O’Connor A, Gallagher WM, Lenihan CR, Garvey JF, Howell K, Fallon PG, Cummins EP, Taylor CT (2011) An intact canonical NF-κB pathway is required for inflammatory gene expression in response to hypoxia. J Immunol 186:1091–1096

    Article  CAS  PubMed  Google Scholar 

  183. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck C, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci USA 103:18154–18159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Land SC, Tee AR (2007) Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543

    Article  CAS  PubMed  Google Scholar 

  185. Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS (2008) PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci USA 105:2622–2627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Leiser SF, Kaeberlein M (2010) The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 391:1131–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Arjamaa O, Nikinmaa M, Salminen A, Kaarniranta K (2009) Regulatory role of HIF-1α in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 8:349–358

    Article  CAS  PubMed  Google Scholar 

  189. Semenza GL (2002) Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med 41:79–83

    Article  CAS  PubMed  Google Scholar 

  190. Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268:302–316

    Article  CAS  PubMed  Google Scholar 

  191. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    Article  CAS  PubMed  Google Scholar 

  193. Tsamis A, Krawiec JT, Vorp DA (2013) Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface 10:20121004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  194. Risteli J, Kivirikko KI (1976) Intracellular enzymes of collagen biosynthesis in rat liver as a function of age and in hepatic injury induced by dimethylnitrosamine. Changes in prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase activities. Biochem J 158:361–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Tryggvason K, Majamaa K, Kivirikko KI (1979) Prolyl 3-hydroxylase and 4-hydroxylase activities in certain rat and chick-embryo tissues and age-related changes in their activities in the rat. Biochem J 178:127–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, Maddox K, Tufa S, Keene DR, Klein R, Bächinger HP (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem 285:17253–17262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135S–1140S

    CAS  PubMed  Google Scholar 

  198. May JM, Harrison FE (2013) Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 19:2068–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Yao HW, Li J (2015) Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 352:2–13

    Article  PubMed  CAS  Google Scholar 

  200. Gardi C, Arezzini B, Fortino V, Comporti M (2002) Effect of free iron on collagen synthesis, cell proliferation and MMP-2 expression in rat hepatic stellate cells. Biochem Pharmacol 64:1139–1145

    Article  CAS  PubMed  Google Scholar 

  201. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288:10819–10829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Ewald CY, Landis JN, Abate JP, Murphy CT, Blackwell TK (2015) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519:97–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Gallant J, Kurland C, Parker J, Holliday R, Rosenberger R (1997) The error catastrophe theory of aging. Point counterpoint. Exp Gerontol 32:333–346

    Article  CAS  PubMed  Google Scholar 

  205. Dwyer BE, Fando JL, Wasterlain CG (1980) Rat brain protein synthesis declines during postdevelopmental aging. J Neurochem 35:746–749

    Article  CAS  PubMed  Google Scholar 

  206. Rattan SI (1996) Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 31:33–47

    Article  CAS  PubMed  Google Scholar 

  207. Tavernarakis N (2008) Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18:228–235

    Article  CAS  PubMed  Google Scholar 

  208. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  209. Sherman MY, Qian SB (2013) Less is more: improving proteostasis by translation slow down. Trends Biochem Sci 38:585–591

    Article  CAS  PubMed  Google Scholar 

  210. Scott B, Sun CL, Mao X, Yu C, Vohra BP, Milbrandt J, Crowder CM (2013) Role of oxygen consumption in hypoxia protection by translation factor depletion. J Exp Biol 216:2283–2292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Saito K, Adachi N, Koyama H, Matsushita M (2010) OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. FEBS Lett 584:3340–3347

    Article  CAS  PubMed  Google Scholar 

  212. Dancy BM, Sedensky MM, Morgan PG (2014) Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 56:245–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the grants from the Academy of Finland, VTR funding from Kuopio University Hospital, the Finnish Cultural Foundation, and the Alfred Kordelin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kaarniranta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salminen, A., Kauppinen, A. & Kaarniranta, K. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell. Mol. Life Sci. 72, 3897–3914 (2015). https://doi.org/10.1007/s00018-015-1978-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1978-z

Keywords

Navigation