Skip to main content

Advertisement

Log in

Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074. doi:10.1155/2010/214074

    PubMed Central  PubMed  Google Scholar 

  2. Simmons SO, Fan CY, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111:202–225

    Article  CAS  PubMed  Google Scholar 

  3. Gupta GS (2012) Animal lectins: form, function and clinical applications. Springer-Verlag, Wien

    Book  Google Scholar 

  4. Perillo NL, Marcus ME, Baum LG (1998) Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med (Berl) 76:402–412

    Article  CAS  Google Scholar 

  5. Klyosov AA, Witczak ZJ, Platt D (eds) (2008) Galectins. Wiley, Hoboken

    Google Scholar 

  6. Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    Article  CAS  PubMed  Google Scholar 

  7. Timoshenko AV, André S, Kaltner H, Dong X, Gabius HJ (1997) Generation of H2O2 by human neutrophils and changes of cytosolic Ca2+ and pH of rat thymocytes in response to galactoside-binding proteins (lectins or immunoglobulins). Biosci Rep 17:219–230

    Article  CAS  PubMed  Google Scholar 

  8. Timoshenko AV, Gorudko IV, Maslakova OV, André S, Kuwabara I, Liu FT, Kaltner H, Gabius HJ (2003) Analysis of selected blood and immune cell responses to carbohydrate-dependent surface binding of proto- and chimera-type galectins. Mol Cell Biochem 250:139–149

    Article  CAS  PubMed  Google Scholar 

  9. Timoshenko AV, Kaltner H, André S, Gabius HJ, Lala PK (2010) Differential stimulation of VEGF-C production by adhesion/growth-regulatory galectins and plant lectins in human breast cancer cells. Anticancer Res 30:4829–4833

    CAS  PubMed  Google Scholar 

  10. Hsu DK, Yang RY, Liu FT (2006) Galectins in apoptosis. Methods Enzymol 417:256–273

    Article  CAS  PubMed  Google Scholar 

  11. Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    Article  CAS  PubMed  Google Scholar 

  12. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  CAS  PubMed  Google Scholar 

  13. Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17

    Article  PubMed  Google Scholar 

  14. Cumming R, Liu FT (2009) Galectins. In: Varki A et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 475–487

    Google Scholar 

  15. Arthur CM, Baruffi MD, Cummings RD, Stowell SR (2015) Evolving mechanistic insights into galectin functions. Methods Mol Biol 1207:1–35

    Article  PubMed  CAS  Google Scholar 

  16. Laderach DJ, Gentilini L, Jaworski FM, Compagno D (2013) Galectins as new prognostic markers and potential therapeutic targets for advanced prostate cancers. Prostate Cancer 2013:519436. doi:10.1155/2013/519436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Thijssen VL, Heusschen R, Caers J, Griffioen AW (2015) Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta 1855:235–247

    CAS  PubMed  Google Scholar 

  18. Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127:375–386

    Article  CAS  PubMed  Google Scholar 

  19. Satelli A, Rao PS, Gupta PK, Lockman PR, Srivenugopal KS, Rao US (2008) Varied expression and localization of multiple galectins in different cancer cell lines. Oncol Rep 19:587–594

    CAS  PubMed  Google Scholar 

  20. Katzenmaier EM, André S, Kopitz J, Gabius HJ (2014) Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro. Anticancer Res 34:5429–5438

    CAS  PubMed  Google Scholar 

  21. Klyosov AA, Traber PG (2012) Galectins in disease and potential therapeutic approaches. ACS Symp Ser 1151:3–43

    Google Scholar 

  22. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6:1389–1393

    CAS  PubMed  Google Scholar 

  23. Saussez S, Lorfevre F, Lequeux T, Laurent G, Chantrain G, Vertongen F, Toubeau G, Decaestecker C, Kiss R (2008) The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol 44:86–93

    Article  CAS  PubMed  Google Scholar 

  24. Sakaki M, Oka N, Nakanishi R, Yamaguchi K, Fukumori T, Kanayama HO (2008) Serum level of galectin-3 in human bladder cancer. J Med Invest 55:127–132

    Article  PubMed  Google Scholar 

  25. Vereecken P, Awada A, Suciu S, Castro G, Morandini R, Litynska A, Lienard D, Ezzedine K, Ghanem G, Heenen M (2009) Evaluation of the prognostic significance of serum galectin-3 in American Joint Committee on Cancer stage III and stage IV melanoma patients. Melanoma Res 19:316–320

    Article  CAS  PubMed  Google Scholar 

  26. Senapati S, Chaturvedi P, Chaney WG, Chakraborty S, Gnanapragassam VS, Sasson AR, Batra SK (2011) Novel interaction of MUC4 and galectin: potential pathobiological implications for metastasis in lethal pancreatic cancer. Clin Cancer Res 17:267–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Xie L, Ni WK, Chen XD, Xiao MB, Chen BY, He S, Lu CH, Li XY, Jiang F, Ni RZ (2012) The expressions and clinical significances of tissue and serum galectin-3 in pancreatic carcinoma. J Cancer Res Clin Oncol 138:1035–1043

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe M, Takemasa I, Kaneko N, Yokoyama Y, Matsuo E, Iwasa S, Mori M, Matsuura N, Monden M, Nishimura O (2011) Clinical significance of circulating galectins as colorectal cancer markers. Oncol Rep 25:1217–1226

    PubMed  Google Scholar 

  29. Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, Chen C, Rhodes JM, Yu LG (2011) Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res 17:7035–7046

    Article  CAS  PubMed  Google Scholar 

  30. Barrow H, Rhodes JM, Yu LG (2013) Simultaneous determination of serum galectin-3 and -4 levels detects metastases in colorectal cancer patients. Cell Oncol (Dordr) 36:9–13

    Article  CAS  Google Scholar 

  31. Klyosov AA, Traber PG (eds) (2012) Galectins and disease implications for targeted therapeutics, vol 1151. ACS Symposium Series, pp 1–443

  32. Kozak K, Lanteigne J, Timoshenko AV (2014) Glycobiological aspects of cellular stress responses. Mol Biol Cell 25, Abstract No. P1500 (The Annual Meeting of the American Society for Cell Biology, December 6–10, 2014, Philadelphia)

  33. Abedin MJ, Kashio Y, Seki M, Nakamura K, Hirashima M (2003) Potential roles of galectins in myeloid differentiation into three different lineages. J Leukoc Biol 73:650–656

    Article  CAS  PubMed  Google Scholar 

  34. Laderach DJ, Gentilini LD, Giribaldi L, Delgado VC, Nugnes L, Croci DO, Al Nakouzi N, Sacca P, Casas G, Mazza O, Shipp MA, Vazquez E, Chauchereau A, Kutok JL, Rodig SJ, Elola MT, Compagno D, Rabinovich GA (2013) A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res 73:86–96

    Article  CAS  PubMed  Google Scholar 

  35. Stowell SR, Cummings RD (eds) (2015) Galectins: methods and protocols. Meth Mol Biol 1207: 1–488

  36. Compagno D, Jaworski FM, Gentilini L, Contrufo G, González Pérez I, Elola MT, Pregi N, Rabinovich GA, Laderach DJ (2014) Galectins: major signaling modulators inside and outside the cell. Curr Mol Med 14:630–636

    Article  CAS  PubMed  Google Scholar 

  37. Vladoiu MC, Labrie M, St-Pierre Y (2014) Intracellular galectins in cancer cells: potential new targets for therapy (Review). Int J Oncol 44:1001–1014

    CAS  PubMed  Google Scholar 

  38. Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, O’Byrne KJ, Giaccia AJ, Koong AC (2005) Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23:8932–8941

    Article  CAS  PubMed  Google Scholar 

  39. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378:736–739

    Article  CAS  PubMed  Google Scholar 

  40. Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC (2000) Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165:3722–3729

    Article  CAS  PubMed  Google Scholar 

  41. Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O (1999) Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97:100–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209:1985–2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. White NM, Masui O, Newsted D, Scorilas A, Romaschin AD, Bjarnason GA, Siu KW, Yousef GM (2014) Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer 110:1250–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen GQ, Zhao KW (2010) Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 31:1367–1375

    Article  CAS  PubMed  Google Scholar 

  45. Zhao XY, Zhao KW, Jiang Y, Zhao M, Chen GQ (2011) Synergistic induction of galectin-1 by CCAAT/enhancer binding protein and hypoxia-inducible factor 1 and its role in differentiation of acute myeloid leukemic cells. J Biol Chem 286:36808–36819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104:13134–13139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Seropian IM, Cerliani JP, Toldo S, Van Tassell BW, Ilarregui JM, González GE, Matoso M, Salloum FN, Melchior R, Gelpi RJ, Stupirski JC, Benatar A, Gómez KA, Morales C, Abbate A, Rabinovich GA (2013) Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am J Pathol 182:29–40

    Article  CAS  PubMed  Google Scholar 

  48. Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MA, Rossi MA, James JA, McEver RP, Cummings RD (2010) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20:507–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Woolley JF, Al-Rubeai M (2009) The isolation and identification of a secreted biomarker associated with cell stress in serum-free CHO cell culture. Biotechnol Bioeng 104:590–600

    Article  CAS  PubMed  Google Scholar 

  50. Iwamoto M, Taguchi C, Sasaguri K, Kubo KY, Horie H, Yamamoto T, Onozuka M, Sato S, Kadoya T (2010) The galectin-1 level in serum as a novel marker for stress. Glycoconj J 27:419–425

    Article  CAS  PubMed  Google Scholar 

  51. Strik HM, Schmidt K, Lingor P, Tönges L, Kugler W, Nitsche M, Rabinovich GA, Bähr M (2007) Galectin-1 expression in human glioma cells: modulation by ionizing radiation and effects on tumor cell proliferation and migration. Oncol Rep 18:483–488

    CAS  PubMed  Google Scholar 

  52. Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C, Kiss R, Lefranc F (2008) Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol 67:456–469

    Article  PubMed  Google Scholar 

  53. Paclik D, Berndt U, Guzy C, Dankof A, Danese S, Holzloehner P, Rosewicz S, Wiedenmann B, Wittig BM, Dignass AU, Sturm A (2008) Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med 86:1395–1406

    Article  CAS  PubMed  Google Scholar 

  54. Loser K, Sturm A, Voskort M, Kupas V, Balkow S, Auriemma M, Sternemann C, Dignass AU, Luger TA, Beissert S (2009) Galectin-2 suppresses contact allergy by inducing apoptosis in activated CD8+ T cells. J Immunol 182:5419–5429

    Article  CAS  PubMed  Google Scholar 

  55. Dvoránková B, Lacina L, Smetana K Jr, Lensch M, Manning JC, André S, Gabius HJ (2008) Human galectin-2: nuclear presence in vitro and its modulation by quiescence/stress factors. Histol Histopathol 23:167–178

    PubMed  Google Scholar 

  56. Chen C, Duckworth CA, Fu B, Pritchard DM, Rhodes JM, Yu LG (2014) Circulating galectins -2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. Br J Cancer 110:741–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jung JH, Kim HJ, Yeom J, Yoo C, Shin J, Yoo J, Kang CS, Lee C (2012) Lowered expression of galectin-2 is associated with lymph node metastasis in gastric cancer. J Gastroenterol 47:37–48

    Article  CAS  PubMed  Google Scholar 

  58. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  CAS  PubMed  Google Scholar 

  59. Bernerd F, Sarasin A, Magnaldo T (1999) Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc Natl Acad Sci USA 96:11329–11334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yamaguchi T, Hiromasa K, Kabashima-Kubo R, Yoshioka M, Nakamura M (2013) Galectin-7, induced by cis-urocanic acid and ultraviolet B irradiation, down-modulates cytokine production by T lymphocytes. Exp Dermatol 22:840–842

    Article  CAS  PubMed  Google Scholar 

  61. Villeneuve C, Baricault L, Canelle L, Barboule N, Racca C, Monsarrat B, Magnaldo T, Larminat F (2011) Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells. Mol Biol Cell 22:999–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kuwabara I, Kuwabara Y, Yang RY, Schuler M, Green DR, Zuraw BL, Hsu DK, Liu FT (2002) Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 277:3487–3497

    Article  CAS  PubMed  Google Scholar 

  63. Lee JS, Ys Lee, Jeon B, Yj Jeon, Yoo H, Kim TY (2012) EC-SOD induces apoptosis through COX-2 and galectin-7 in the epidermis. J Dermatol Sci 65:126–133

    Article  CAS  PubMed  Google Scholar 

  64. St-Pierre Y, Campion CG, Grosset AA (2012) A distinctive role for galectin-7 in cancer? Front Biosci (Landmark Ed) 17:438–450

    Article  CAS  Google Scholar 

  65. Campion CG, Labrie M, Lavoie G, St-Pierre Y (2013) Expression of galectin-7 is induced in breast cancer cells by mutant p53. PLoS One 8:e72468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Campion CG, Labrie M, Grosset AA, St-Pierre Y (2014) The CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2) upregulates galectin-7 expression in human breast cancer cells. PLoS One 9:e95087. doi:10.1371/journal.pone.0095087

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. van der Krieken SE, Popeijus HE, Mensink RP, Plat J (2015) CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances. Biomed Res Int 2015:324815. doi:10.1155/2015/324815

    PubMed Central  PubMed  Google Scholar 

  68. Dyer KD, Rosenberg HF (1996) Eosinophil Charcot–Leyden crystal protein binds to β-galactoside sugars. Life Sci 58:2073–2082

    Article  CAS  PubMed  Google Scholar 

  69. Swaminathan GJ, Leonidas DD, Savage MP, Ackerman SJ, Acharya KR (1999) Selective recognition of mannose by the human eosinophil Charcot–Leyden crystal protein (galectin-10): a crystallographic study at 1.8 A resolution. Biochemistry 38:13837–13843

    Article  CAS  PubMed  Google Scholar 

  70. Ackerman SJ, Liu L, Kwatia MA, Savage MP, Leonidas DD, Swaminathan GJ, Acharya KR (2002) Charcot–Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem 277:14859–14868

    Article  CAS  PubMed  Google Scholar 

  71. Kubach J, Lutter P, Bopp T, Stoll S, Becker C, Huter E, Richter C, Weingarten P, Warger T, Knop J, Müllner S, Wijdenes J, Schild H, Schmitt E, Jonuleit H (2007) Human CD4+ CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110:1550–1558

    Article  CAS  PubMed  Google Scholar 

  72. Devouassoux G, Pachot A, Laforest L, Diasparra J, Freymond N, Van Ganse E, Mougin B, Pacheco Y (2008) Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy 63:125–131

    CAS  PubMed  Google Scholar 

  73. Chua JC, Douglass JA, Gillman A, O’Hehir RE, Meeusen EN (2012) Galectin-10, a potential biomarker of eosinophilic airway inflammation. PLoS One 7:e42549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Negrete-Garcia MC, Jiménez-Torres CY, Alvarado-Vásquez N, Montes-Vizuet AR, Velázquez-Rodriguez JR, Jimenez-Martinez MC, Teran-Juárez LM (2012) Galectin-10 is released in the nasal lavage fluid of patients with aspirin-sensitive respiratory disease. Scientific World J 2012:474020

    Article  CAS  Google Scholar 

  75. De Re V, Simula MP, Cannizzaro R, Pavan A, De Zorzi MA, Toffoli G, Canzonieri V (2009) Galectin-10, eosinophils, and celiac disease. Ann N Y Acad Sci 1173:357–364

    Article  PubMed  CAS  Google Scholar 

  76. Dyer KD, Rosenberg HF (2001) Transcriptional regulation of galectin-10 (eosinophil Charcot–Leyden crystal protein): a GC box (−44 to −50) controls butyric acid induction of gene expression. Life Sci 69:201–212

    Article  CAS  PubMed  Google Scholar 

  77. Bohn H, Kraus W, Winckler W (1983) Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodev Biol Med 4:343–350

    CAS  PubMed  Google Scholar 

  78. Visegrády B, Than NG, Kilár F, Sümegi B, Than GN, Bohn H (2001) Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectin-13). Protein Eng 14:875–880

    Article  PubMed  Google Scholar 

  79. Than NG, Pick E, Bellyei S, Szigeti A, Burger O, Berente Z, Janaky T, Boronkai A, Kliman H, Meiri H, Bohn H, Than GN, Sumegi B (2004) Functional analyses of placental protein 13/galectin-13. Eur J Biochem 271:1065–1078

    Article  CAS  PubMed  Google Scholar 

  80. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B (2010) Effects of vitamins C and E, acetylsalicylic acid and heparin on fusion, beta-hCG and PP13 expression in BeWo cells. Placenta 31:431–438

    Article  CAS  PubMed  Google Scholar 

  81. Than NG, Sumegi B, Than GN, Berente Z, Bohn H (1999) Isolation and sequence analysis of a cDNA encoding human placental tissue protein 13 (PP13), a new lysophospholipase, homologue of human eosinophil Charcot–Leyden Crystal protein. Placenta 20:703–710

    Article  CAS  PubMed  Google Scholar 

  82. Masoura S, Kalogiannidis IA, Gitas G, Goutsioulis A, Koiou E, Athanasiadis A, Vavatsi N (2012) Biomarkers in pre-eclampsia: a novel approach to early detection of the disease. J Obstet Gynaecol 32:609–616

    Article  CAS  PubMed  Google Scholar 

  83. Petla LT, Chikkala R, Ratnakar KS, Kodati V, Sritharan V (2013) Biomarkers for the management of pre-eclampsia in pregnant women. Indian J Med Res 138:60–67

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Nicolaides KH, Bindra R, Turan OM, Chefetz I, Sammar M, Meiri H, Tal J, Cuckle HS (2006) A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 27:13–17

    Article  CAS  PubMed  Google Scholar 

  85. Than NG, Abdul Rahman O, Magenheim R, Nagy B, Fule T, Hargitai B, Sammar M, Hupuczi P, Tarca AL, Szabo G, Kovalszky I, Meiri H, Sziller I, Rigo J Jr, Romero R, Papp Z (2008) Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch 453:387–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, Xu Y, Tarquini F, Szilagyi A, Gal P, Hou Z, Tarca AL, Kim CJ, Kim JS, Haidarian S, Uddin M, Bohn H, Benirschke K, Santolaya-Forgas J, Grossman LI, Erez O, Hassan SS, Zavodszky P, Papp Z, Wildman DE (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci USA 106:9731–9736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN (2002) Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem 277:14916–14924

    Article  CAS  PubMed  Google Scholar 

  88. Young AR, Barcham GJ, Kemp JM, Dunphy JL, Nash A, Meeusen EN (2009) Functional characterization of an eosinophil-specific galectin, ovine galectin-14. Glycoconj J 26:423–432

    Article  CAS  PubMed  Google Scholar 

  89. Hoorens P, Rinaldi M, Mihi B, Dreesen L, Grit G, Meeusen E, Li RW, Geldhof P (2011) Galectin-11 induction in the gastrointestinal tract of cattle following nematode and protozoan infections. Parasite Immunol 33:669–678

    Article  CAS  PubMed  Google Scholar 

  90. Zeng Y, Danielson KG, Albert TJ, Shapiro IM, Risbud MV (2007) HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res 22:1851–1861

    Article  CAS  PubMed  Google Scholar 

  91. Olbryt M, Jarzab M, Jazowiecka-Rakus J, Simek K, Szala S, Sochanik A (2006) Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr 13:191–203

    Article  CAS  PubMed  Google Scholar 

  92. Olbryt M, Habryka A, Tyszkiewicz T, Rusin A, Cichoń T, Jarząb M, Krawczyk Z (2011) Melanoma-associated genes, MXI1, FN1, and NME1, are hypoxia responsive in murine and human melanoma cells. Melanoma Res 21:417–425

    Article  CAS  PubMed  Google Scholar 

  93. de Oliveira JT, Gartner F (2012) Dynamic tuning of galectins and their binding sites during mammary tumor progression and metastasis. ACS Symp Ser 1151:181–194

    Article  CAS  Google Scholar 

  94. Hu R, Jin H, Zhou S, Yang P, Li X (2007) Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line BeWo. Placenta 28:399–407

    Article  CAS  PubMed  Google Scholar 

  95. Rêgo MJ, Vieira de Mello GS, da Silva Santos CA, Chammas R, Beltrão EI (2013) Implications on glycobiological aspects of tumor hypoxia in breast ductal carcinoma in situ. Med Mol Morphol 46:92–96

    Article  PubMed  CAS  Google Scholar 

  96. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57:5272–5276

    CAS  PubMed  Google Scholar 

  97. Ikemori RY, Machado CM, Furuzawa KM, Nonogaki S, Osinaga E, Umezawa K, de Carvalho MA, Verinaud L, Chammas R (2014) Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival. PLoS One 9:e111592. doi:10.1371/journal.pone.0111592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Doverhag C, Hedtjärn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Sävman K (2010) Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38:36–46

    Article  CAS  PubMed  Google Scholar 

  99. Karlsson A, Follin P, Leffler H, Dahlgren C (1998) Galectin-3 activates the NADPH oxidase in exudated but not peripheral blood neutrophils. Blood 91:3430–3438

    CAS  PubMed  Google Scholar 

  100. Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156–2164

    Article  CAS  PubMed  Google Scholar 

  102. Fernandez GC, Ilarregui JM, Rubel CJ, Toscano MA, Gomez SA, Beigier Bompadre M, Isturiz MA, Rabinovich GA, Palermo MS (2005) Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: involvement of alternative MAPK pathways. Glycobiology 15:519–527

    Article  CAS  PubMed  Google Scholar 

  103. Jeng KC, Frigeri LG, Liu FT (1994) An endogenous lectin, galectin-3 (εBP/Mac-2), potentiates IL-1 production by human monocytes. Immunol Lett 42:113–116

    Article  CAS  PubMed  Google Scholar 

  104. Satoh K, Niwa M, Binh NH, Nakashima M, Kobayashi K, Takamatsu M, Hara A (2011) Increase of galectin-3 expression in microglia by hyperthermia in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia. Neurosci Lett 504:199–203

    Article  CAS  PubMed  Google Scholar 

  105. Satoh K, Niwa M, Goda W, Binh NH, Nakashima M, Takamatsu M, Hara A (2011) Galectin-3 expression in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia, and its inhibition by hypothermia. Brain Res 1382:266–274

    Article  CAS  PubMed  Google Scholar 

  106. Lee YJ, Song YK (2002) Cooperative interaction between interleukin 10 and galectin-3 against liver ischemia-reperfusion injury. Clin Cancer Res 8:217–220

    CAS  PubMed  Google Scholar 

  107. Sunil VR, Patel-Vayas K, Shen J, Laskin JD, Laskin DL (2012) Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress. Toxicol Appl Pharmacol 263:195–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Sunil VR, Vayas KN, Massa CB, Gow AJ, Laskin JD, Laskin DL (2013) Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci 133:309–319

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu FT, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277:42299–42305

    Article  CAS  PubMed  Google Scholar 

  110. Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230:160–171

    Article  CAS  PubMed  Google Scholar 

  111. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL (2010) Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail 12:826–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Lok DJ, Lok SI, Bruggink-André de la Porte PW, Badings E, Lipsic E, van Wijngaarden J, de Boer RA, van Veldhuisen DJ, van der Meer P (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102:103–110

    Article  CAS  PubMed  Google Scholar 

  113. Srivatsan V, George M, Shanmugam E (2014) Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? Eur J Prev Cardiol. doi:10.1177/2047487314552797

    PubMed  Google Scholar 

  114. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Carvalho RS, Fernandes VC, Nepomuceno TC, Rodrigues DC, Woods NT, Suarez-Kurtz G, Chammas R, Monteiro AN, Carvalho MA (2014) Characterization of LGALS3 (galectin-3) as a player in DNA damage response. Cancer Biol Ther 15:840–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Dumic J, Lauc G, Flögel M (2000) Expression of galectin-3 in cells exposed to stress-roles of jun and NF-κB. Cell Physiol Biochem 10:149–158

    Article  CAS  PubMed  Google Scholar 

  117. Dumić J, Barisić K, Flögel M, Lauc G (2000) Galectin-3 decreases in mice exposed to immobilization stress. Stress 3:241–246

    Article  PubMed  Google Scholar 

  118. Hokama A, Mizoguchi E, Sugimoto K, Shimomura Y, Tanaka Y, Yoshida M, Rietdijk ST, de Jong YP, Snapper SB, Terhorst C, Blumberg RS, Mizoguchi A (2004) Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20:681–693

    Article  CAS  PubMed  Google Scholar 

  119. Nishida A, Nagahama K, Imaeda H, Ogawa A, Lau CW, Kobayashi T, Hisamatsu T, Preffer FI, Mizoguchi E, Ikeuchi H, Hibi T, Fukuda M, Andoh A, Blumberg RS, Mizoguchi A (2012) Inducible colitis associated glycome capable of stimulating the proliferation of memory CD4+ T cells. J Exp Med 209:2383–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Paclik D, Lohse K, Wiedenmann B, Dignass AU, Sturm A (2008) Galectin-2 and -4, but not galectin-1, promote intestinal epithelial wound healing in vitro through a TGF-β-independent mechanism. Inflamm Bowel Dis 14:1366–1372

    Article  PubMed  Google Scholar 

  121. Troncoso MF, Elola MT, Croci DO, Rabinovich GA (2012) Integrating structure and function of ‘tandem-repeat’ galectins. Front Biosci (Schol Ed) 4:864–887

    Article  Google Scholar 

  122. Braccia A, Villani M, Immerdal L, Niels-Christiansen LL, Nystrøm BT, Hansen GH, Danielsen EM (2003) Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”. J Biol Chem 278:15679–15684

    Article  CAS  PubMed  Google Scholar 

  123. Danielsen EM, Hansen GH (2008) Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64:377–382

    Article  CAS  PubMed  Google Scholar 

  124. Huflejt ME, Leffler H (2004) Galectin-4 in normal tissues and cancer. Glycoconj J 20:247–255

    Article  CAS  PubMed  Google Scholar 

  125. Gopalkrishnan RV, Roberts T, Tuli S, Kang D, Christiansen KA, Fisher PB (2000) Molecular characterization of prostate carcinoma tumor antigen-1, PCTA-1, a human galectin-8 related gene. Oncogene 19:4405–4416

    Article  CAS  PubMed  Google Scholar 

  126. Elola MT, Ferragut F, Cárdenas Delgado VM, Nugnes LG, Gentilini L, Laderach D, Troncoso MF, Compagno D, Wolfenstein-Todel C, Rabinovich GA (2014) Expression, localization and function of galectin-8, a tandem-repeat lectin, in human tumors. Histol Histopathol 29:1093–1105

    CAS  PubMed  Google Scholar 

  127. Nishi N, Shoji H, Seki M, Itoh A, Miyanaka H, Yuube K, Hirashima M, Nakamura T (2003) Galectin-8 modulates neutrophil function via interaction with integrin αM. Glycobiology 13:755–763

    Article  CAS  PubMed  Google Scholar 

  128. Bidon-Wagner N, Le Pennec JP (2004) Human galectin-8 isoforms and cancer. Glycoconj J 19:557–563

    Article  PubMed  Google Scholar 

  129. Bidon N, Brichory F, Bourguet P, Le Pennec JP, Dazord L (2008) Galectin-8: a complex sub-family of galectins (review). Int J Mol Med 8:245–250

    Google Scholar 

  130. Thomas MP, Lieberman J (2013) Live or let die: posttranscriptional gene regulation in cell stress and cell death. Immunol Rev 253:237–252

    Article  PubMed  CAS  Google Scholar 

  131. Wiersma VR, de Bruyn M, Helfrich W, Bremer E (2013) Therapeutic potential of galectin-9 in human disease. Med Res Rev 33(Suppl 1):E102–E126

    Article  CAS  PubMed  Google Scholar 

  132. Heusschen R, Griffioen AW, Thijssen VL (2013) Galectin-9 in tumor biology: a jack of multiple trades. Biochim Biophys Acta 1836:177–185

    CAS  PubMed  Google Scholar 

  133. Imaizumi T, Kumagai M, Sasaki N, Kurotaki H, Mori F, Seki M, Nishi N, Fujimoto K, Tanji K, Shibata T, Tamo W, Matsumiya T, Yoshida H, Cui XF, Takanashi S, Hanada K, Okumura K, Yagihashi S, Wakabayashi K, Nakamura T, Hirashima M, Satoh K (2002) Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells. J Leukoc Biol 72:486–491

    CAS  PubMed  Google Scholar 

  134. Imaizumi T, Yoshida H, Nishi N, Sashinami H, Nakamura T, Hirashima M, Ohyama C, Itoh K, Satoh K (2007) Double-stranded RNA induces galectin-9 in vascular endothelial cells: involvement of TLR3, PI3 K, and IRF3 pathway. Glycobiology 17:12C–15C

    Article  CAS  PubMed  Google Scholar 

  135. Matsuura A, Tsukada J, Mizobe T, Higashi T, Mouri F, Tanikawa R, Yamauchi A, Hirashima M, Tanaka Y (2009) Intracellular galectin-9 activates inflammatory cytokines in monocytes. Genes Cells 14:511–521

    Article  CAS  PubMed  Google Scholar 

  136. Mengshol JA, Golden-Mason L, Arikawa T, Smith M, Niki T, McWilliams R, Randall JA, McMahan R, Zimmerman MA, RangachariM Dobrinskikh E, Busson P, Polyak SJ, HirashimaM Rosen HR (2010) A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS One 5:e9504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Asakura H, Kashio Y, Nakamura K, Seki M, Dai S, Shirato Y, Abedin MJ, Yoshida N, Nishi N, Imaizumi T, Saita N, Toyama Y, Takashima H, Nakamura T, Ohkawa M, Hirashima M (2002) Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9. J Immunol 169:5912–5918

    Article  CAS  PubMed  Google Scholar 

  138. Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Müller I (2013) Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol 43:2741–2749

    Article  CAS  PubMed  Google Scholar 

  139. Yoshida H, Imaizumi T, Kumagai M, Kimura K, Satoh C, Hanada N, Fujimoto K, Nishi N, Tanji K, Matsumiya T, Mori F, Cui XF, Tamo W, Shibata T, Takanashi S, Okumura K, Nakamura T, Wakabayashi K, Hirashima M, Sato Y, Satoh K (2001) Interleukin-1β stimulates galectin-9 expression in human astrocytes. NeuroReport 12:3755–3758

    Article  CAS  PubMed  Google Scholar 

  140. Steelman AJ, Smith R 3rd, Welsh CJ, Li J (2013) Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis. J Biol Chem 288:23776–23787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Imaizumi T, Kumagai M, Nishi N, Hirashima M, Hatakeyama M, Tamo W, Yoshida H, Nakamura T, Okumura K, Satoh K (2003) 15-deoxy-Δ(12,14)-prostaglandin J2 inhibits IFN-γ-induced galectin-9 expression in cultured human umbilical vein endothelial cells. Int Arch Allergy Immunol 131:57–561

    Article  CAS  PubMed  Google Scholar 

  142. Wu C, Thalhamer T, Franca RF, Xiao S, Wang C, Hotta C, Zhu C, Hirashima M, Anderson AC, Kuchroo VK (2014) Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41:270–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Yang RY, Hsu DK, Yu L, Ni J, Liu FT (2001) Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem 276:20252–20260

    Article  CAS  PubMed  Google Scholar 

  144. Hotta K, Funahashi T, Matsukawa Y, Takahashi M, Nishizawa H, Kishida K, Matsuda M, Kuriyama H, Kihara S, Nakamura T, Tochino Y, Bodkin NL, Hansen BC, Matsuzawa Y (2001) Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity. J Biol Chem 276:34089–34097

    Article  CAS  PubMed  Google Scholar 

  145. Yang RY, Hsu DK, Yu L, Chen HY, Liu FT (2004) Galectin-12 is required for adipogenic signaling and adipocyte differentiation. J Biol Chem 279:29761–29766

    Article  CAS  PubMed  Google Scholar 

  146. Yang RY, Havel PJ, Liu FT (2012) Galectin-12: a protein associated with lipid droplets that regulates lipid metabolism and energy balance. Adipocyte 1:96–100

    Article  PubMed Central  PubMed  Google Scholar 

  147. Guardia CM, Gauto DF, Di Lella S, Rabinovich GA, Martí MA, Estrin DA (2011) An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network. J Chem Inf Model 51:1918–1930

    Article  CAS  PubMed  Google Scholar 

  148. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D (2007) The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 27:992–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295. doi:10.1186/1471-2105-10-295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173

    Article  PubMed Central  PubMed  Google Scholar 

  152. Lahm H, André S, Hoeflich A, Kaltner H, Siebert HC, Sordat B, von der Lieth CW, Wolf E, Gabius HJ (2004) Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 20:227–238

    Article  CAS  PubMed  Google Scholar 

  153. Chiariotti L, Salvatore P, Frunzio R, Bruni CB (2004) Galectin genes: regulation of expression. Glycoconj J 19:441–449

    Article  PubMed  Google Scholar 

  154. Benvenuto G, Carpentieri ML, Salvatore P, Cindolo L, Bruni CB, Chiariotti L (1996) Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region. Mol Cell Biol 16:2736–2743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Kim SJ, Hwang JA, Ro JY, Lee YS, Chun KH (2013) Galectin-7 is epigenetically-regulated tumor suppressor in gastric cancer. Oncotarget 4:1461–1471

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Western Strategic Support for NSERC Success Seed Grant (Western University, London, Ontario).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Timoshenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, A.V. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell. Mol. Life Sci. 72, 4327–4340 (2015). https://doi.org/10.1007/s00018-015-2008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2008-x

Keywords

Navigation