Skip to main content

Advertisement

Log in

The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The exact cause of Alzheimer’s disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

ARG1:

Arginase 1

Breg:

Regulatory B cell

CAA:

Cerebral amyloid angiopathy

C/EBPβ:

CCAAT/enhancer-binding protein β

CHOP:

C/EBP-homologous protein

FOXP3:

Forkhead box P3

GCN2:

General control nonderepressible 2 kinase

HIF-1α:

Hypoxia-inducible factor-1α

HMGB1:

High mobility group box 1

HSV1:

Herpes simplex virus type 1

IDO:

Indoleamine-pyrrole 2,3-dioxygenase

MCI:

Mild cognitive impairment

MDSC:

Myeloid-derived suppressor cell

MIF:

Macrophage migration inhibitory factor

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX2:

NADPH2 oxidase 2

NRF2:

Nuclear factor-erythroid 2-related factor 2

NSAID:

Non-steroidal anti-inflammatory drug

PD-L1:

Programmed death-ligand 1

PGE2:

Prostaglandin E2

STAT:

Signal transducer and activator of transcription

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor-α

Treg:

Regulatory T cell

TREM2:

Triggering receptor expressed on myeloid cells 2

References

  1. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  2. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60:251–266

    Article  CAS  Google Scholar 

  3. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131(65–86):138

    Google Scholar 

  4. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Monsonego A, Maron R, Zota V, Selkoe DJ, Weiner HL (2001) Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci USA 98:10273–10278

    Article  CAS  PubMed  Google Scholar 

  6. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Melero-Jerez C, Ortega MC, Moline-Velazquez V, Clemente D (2016) Myeloid derived suppressor cells in inflammatory conditions of the central nervous system. Biochim Biophys Acta 1862:368–380

    Article  CAS  PubMed  Google Scholar 

  10. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4:e954829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Millrud CR, Bergenfelz C, Leandersson K (2017) On the origin of myeloid-derived suppressor cells. Oncotarget 8:3649–3665

    Article  PubMed  Google Scholar 

  12. Chang AL, Miska J, Wainwright DA et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76:5671–5682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24:631–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhao Y, Wu T, Shao S, Shi B, Zhao Y (2015) Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology 5:e1004983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bronte V, Brandau S, Chen SH et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cuenca AG, Delano MJ, Kelly-Scumpia KM et al (2011) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17:281–292

    Article  CAS  PubMed  Google Scholar 

  17. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  18. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    Article  CAS  PubMed  Google Scholar 

  19. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Goh C, Narayanan S, Hahn YS (2013) Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol Rev 255:210–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hammerich L, Tacke F (2015) Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol 6:43–50

    Article  PubMed Central  PubMed  Google Scholar 

  22. Saiwai H, Kumamaru H, Ohkawa Y et al (2013) Ly6C+ Ly6G myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem 125:74–88

    Article  CAS  PubMed  Google Scholar 

  23. Fullerton JN, O’Brien AJ, Gilroy DW (2013) Pathways mediating resolution of inflammation: when enough is too much. J Pathol 231:8–20

    Article  PubMed  Google Scholar 

  24. Tu S, Bhagat G, Cui G et al (2008) Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lim HX, Hong HJ, Cho D, Kim TS (2014) IL-18 enhances immunosuppressive responses by promoting differentiation into monocytic myeloid-derived suppressor cells. J Immunol 193:5453–5460

    Article  CAS  PubMed  Google Scholar 

  26. Cheng L, Wang J, Li X, Xing Q, Du P, Su L, Wang S (2011) Interleukin-6 induces Gr-1+CD11b+ myeloid cells to suppress CD8+ T cell-mediated liver injury in mice. PLoS One 6:e17631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Xiao P, Wan X, Cui B et al (2015) Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology 5:e1063772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38:541–554

    Article  CAS  PubMed  Google Scholar 

  29. Simpson KD, Templeton DJ, Cross JV (2012) Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol 189:5533–5540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, Coukos G, Lambris JD (2008) Modulation of the antitumor immune response by complement. Nat Immunol 9:1225–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hsieh CC, Chou HS, Yang HR, Lin F, Bhatt S, Qin J, Wang L, Fung JJ, Qian S, Lu L (2013) The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 121:1760–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74:5723–5733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li J, Sun J, Rong R, Li L, Shang W, Song D, Feng G, Luo F (2017) HMGB1 promotes myeloid-derived suppressor cells and renal cell carcinoma immune escape. Oncotarget 8:63290–63298

    PubMed Central  PubMed  Google Scholar 

  35. Ruan X, Darwiche SS, Cai C, Scott MJ, Pape HC, Billiar TR (2015) Anti-HMGB1 monoclonal antibody ameliorates immunosuppression after peripheral tissue trauma: attenuated T-lymphocyte response and increased splenic CD11b+ Gr-1+ myeloid-derived suppressor cells require HMGB1. Mediat Inflamm 2015:458626

    Article  CAS  Google Scholar 

  36. Simard JC, Cesaro A, Chapeton-Montes J, Tardif M, Antoine F, Girard D, Tessier PA (2013) S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB. PLoS One 8:e72138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Aoki T, Narumiya S (2012) Prostaglandins and chronic inflammation. Trends Pharmacol Sci 33:304–311

    Article  CAS  PubMed  Google Scholar 

  39. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  CAS  PubMed  Google Scholar 

  40. Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P (2012) PGE2-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Investig 41:635–657

    Article  CAS  Google Scholar 

  41. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19–25

    Article  CAS  PubMed  Google Scholar 

  43. Ko HJ, Kim YJ (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cell-mediated immunosuppression in cancer. Arch Pharm Res 39:1597–1608

    Article  CAS  PubMed  Google Scholar 

  44. Rebe C, Vegran F, Berger H, Ghiringhelli F (2013) STAT3 activation: a key factor in tumor immunoescape. JAKSTAT 2:e23010

    PubMed Central  PubMed  Google Scholar 

  45. Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Investig 123:1580–1589

    Article  CAS  PubMed  Google Scholar 

  46. Yu J, Wang Y, Yan F, Zhang P, Li H, Zhao H, Yan C, Yan F, Ren X (2014) Noncanonical NF-κB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J Immunol 193:2574–2586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Vallejo JG (2011) Role of toll-like receptors in cardiovascular diseases. Clin Sci (Lond) 121:1–10

    Article  CAS  Google Scholar 

  48. Kaltschmidt B, Kaltschmidt C (2009) NF-κB in the nervous system. Cold Spring Harb Perspect Biol 1:a001271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30:102–108

    Article  CAS  PubMed  Google Scholar 

  51. Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41:518–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Corzo CA, Condamine T, Lu L et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, Dikov MM, Feoktistov I (2011) Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol 187:6120–6129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Marigo I, Bosio E, Solito S et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32:790–802

    Article  CAS  PubMed  Google Scholar 

  56. McPeak MB, Youssef D, Williams DA, Pritchett CL, Yao ZQ, McCall CE, El Gazzar M (2017) Myeloid cell-specific deletion of Cebpb decreases sepsis-induced immunosuppression in mice. J Leukoc Biol 102:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu KK, Liou JY, Cieslik K (2005) Transcriptional control of COX-2 via C/EBPβ. Arterioscler Thromb Vasc Biol 25:679–685

    Article  CAS  PubMed  Google Scholar 

  58. Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Ochoa AC, Cui Y, Del Valle L, Rodriguez PC (2014) The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41:389–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, Fitzgerald PJ, Majeed A, Wali N, Ostrand-Rosenberg S (2016) Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol 196:3470–3478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang J, Wang B, Zhang W, Wei Y, Bian Z, Zhang CY, Li L, Zen K (2013) Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One 8:e70828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. El Gazzar M (2014) microRNAs as potential regulators of myeloid-derived suppressor cell expansion. Innate Immun 20:227–238

    Article  CAS  PubMed  Google Scholar 

  62. Kumar V, Cheng P, Condamine T et al (2016) CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44:303–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Huang A, Zhang H, Chen S, Xia F, Yang Y, Dong F, Sun D, Xiong S, Zhang J (2014) miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp Cell Res 326:259–266

    Article  CAS  PubMed  Google Scholar 

  64. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) l-Arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:302–306

    Article  CAS  PubMed  Google Scholar 

  70. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797

    Article  CAS  PubMed  Google Scholar 

  72. Crook KR, Jin M, Weeks MF et al (2015) Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol 97:573–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  CAS  PubMed  Google Scholar 

  74. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  75. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816460

    Article  CAS  Google Scholar 

  76. Mittal SK, Roche PA (2015) Suppression of antigen presentation by IL-10. Curr Opin Immunol 34:22–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK, Cho ML (2016) Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the Sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol 68:2717–2727

    Article  CAS  PubMed  Google Scholar 

  78. Mills KH (2004) Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4:841–855

    Article  CAS  PubMed  Google Scholar 

  79. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  80. Lu C, Redd PS, Lee JR, Savage N, Liu K (2016) The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 5:e1247135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17:703–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42:607–612

    Article  CAS  PubMed  Google Scholar 

  83. Wurdinger T, Deumelandt K, van der Vliet HJ, Wesseling P, de Gruijl TD (2014) Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta 1846:560–575

    CAS  PubMed  Google Scholar 

  84. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR, Okada H (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 71:2664–2674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ioannou M, Alissafi T, Lazaridis I et al (2012) Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 188:1136–1146

    Article  CAS  PubMed  Google Scholar 

  87. Moline-Velazquez V, Vila-Del Sol V, de Castro F, Clemente D (2016) Myeloid cell distribution and activity in multiple sclerosis. Histol Histopathol 31:357–370

    CAS  PubMed  Google Scholar 

  88. Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflamm 14:117

    Article  CAS  Google Scholar 

  89. Bowen JL, Olson JK (2009) Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol 183:6971–6980

    Article  CAS  PubMed  Google Scholar 

  90. Hazeldine J, Lord JM, Belli A (2015) Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front Neurol 6:235

    Article  PubMed Central  PubMed  Google Scholar 

  91. Liesz A, Dalpke A, Mracsko E et al (2015) DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 35:583–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Liu Y, Wei J, Guo G, Zhou J (2015) Norepinephrine-induced myeloid-derived suppressor cells block T-cell responses via generation of reactive oxygen species. Immunopharmacol Immunotoxicol 37:359–365

    Article  CAS  PubMed  Google Scholar 

  93. Vaknin I, Kunis G, Miller O, Butovsky O, Bukshpan S, Beers DR, Henkel JS, Yoles E, Appel SH, Schwartz M (2011) Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One 6:e26921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Chen S, Liu Y, Niu Y, Xu Y, Zhou Q, Xu X, Wang J, Yu M (2017) Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson’s disease patients. Neurosci Lett 648:21–25

    Article  CAS  PubMed  Google Scholar 

  95. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, Zhao W, Moore DH, Powell SZ, Appel SH (2013) Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 5:64–79

    Article  CAS  PubMed  Google Scholar 

  96. Le Page A, Garneau H, Dupuis G, Frost EH, Larbi A, Witkowski JM, Pawelec G, Fülöp T (2017) Differential phenotypes of myeloid-derived suppressor and T regulatory cells and cytokine levels in amnestic mild cognitive impairment subjects compared to mild Alzheimer diseased patients. Front Immunol 8:783

    Article  PubMed Central  PubMed  Google Scholar 

  97. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Calvo MG, Nemni R, Clerici M (2010) PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 21:927–938

    Article  CAS  PubMed  Google Scholar 

  98. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, Tsitsou-Kampeli A, Sarel A, Cahalon L, Schwartz M (2015) Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 6:7967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron 78:631–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Ulrich JD, Ulland TK, Colonna M, Holtzman DM (2017) Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94:237–248

    Article  CAS  PubMed  Google Scholar 

  101. Huang KL, Marcora E, Pimenova AA et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20:1052–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Fahrenhold M, Rakic S, Classey J, Brayne C, Ince PG, Nicoll JAR, Boche D (2017) TREM2 expression in the human brain: a marker of monocyte recruitment? Brain Pathol. https://doi.org/10.1111/bpa.12564

    Article  PubMed  Google Scholar 

  103. Ginhoux F, Prinz M (2015) Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  Google Scholar 

  105. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  106. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87:181–194

    Article  CAS  PubMed  Google Scholar 

  107. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  108. Gertig U, Hanisch UK (2014) Microglial diversity by responses and responders. Front Cell Neurosci 8:101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  110. Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    Article  CAS  PubMed  Google Scholar 

  112. Weitz TM, Town T (2012) Microglia in Alzheimer’s disease: it’s all about context. Int J Alzheimers Dis 2012:314185

    PubMed Central  PubMed  Google Scholar 

  113. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  114. Eggen BJ, Raj D, Hanisch UK, Boddeke HW (2013) Microglial phenotype and adaptation. J Neuroimmune Pharmacol 8:807–823

    Article  CAS  PubMed  Google Scholar 

  115. Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Investig 120:1368–1379

    Article  CAS  PubMed  Google Scholar 

  116. Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J (2017) Myeloid cells in the central nervous system. Immunity 46:943–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Kondo M (2010) Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev 238:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, Engelhardt B (2012) T-cell trafficking in the central nervous system. Immunol Rev 248:216–227

    Article  PubMed  Google Scholar 

  119. Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE (2016) Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 1862:461–471

    Article  CAS  PubMed  Google Scholar 

  120. Meeker RB, Williams K, Killebrew DA, Hudson LC (2012) Cell trafficking through the choroid plexus. Cell Adhes Migr 6:390–396

    Article  Google Scholar 

  121. Stark K, Eckart A, Haidari S et al (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14:41–51

    Article  CAS  PubMed  Google Scholar 

  122. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Curtis MA, Park TI, Dragunow M (2016) TGF-β1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflamm 13:37

    Article  CAS  Google Scholar 

  124. Jeynes B, Provias J (2006) The possible role of capillary cerebral amyloid angiopathy in Alzheimer lesion development: a regional comparison. Acta Neuropathol 112:417–427

    Article  CAS  PubMed  Google Scholar 

  125. Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV (2016) Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol 131:687–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Nielsen RB, Egefjord L, Angleys H et al (2017) Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer’s disease. Alzheimers Dement 13:1143–1153

    Article  PubMed  Google Scholar 

  127. Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadzic S, Zlokovic BV (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer’s disease: a matter of blood–brain barrier dysfunction? J Exp Med 214:3151–3169

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  CAS  PubMed  Google Scholar 

  132. Saresella M, Marventano I, Calabrese E, Piancone F, Rainone V, Gatti A, Alberoni M, Nemni R, Clerici M (2014) A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J Alzheimers Dis 38:403–413

    Article  CAS  PubMed  Google Scholar 

  133. Bryson KJ, Lynch MA (2016) Linking T cells to Alzheimer’s disease: from neurodegeneration to neurorepair. Curr Opin Pharmacol 26:67–73

    Article  CAS  PubMed  Google Scholar 

  134. Gonzalez H, Pacheco R (2014) T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflamm 11:201

    Article  CAS  Google Scholar 

  135. Reale M, Iarlori C, Feliciani C, Gambi D (2008) Peripheral chemokine receptors, their ligands, cytokines and Alzheimer’s disease. J Alzheimers Dis 14:147–159

    Article  CAS  PubMed  Google Scholar 

  136. Azizi G, Khannazer N, Mirshafiey A (2014) The potential role of chemokines in Alzheimer’s disease pathogenesis. Am J Alzheimers Dis Other Dement 29:415–425

    Article  Google Scholar 

  137. Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C (2010) The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 224:93–100

    Article  CAS  PubMed  Google Scholar 

  138. Galimberti D, Fenoglio C, Lovati C, Venturelli E, Guidi I, Corra B, Scalabrini D, Clerici F, Mariani C, Bresolin N, Scarpini E (2006) Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol Aging 27:1763–1768

    Article  CAS  PubMed  Google Scholar 

  139. Selenica ML, Alvarez JA, Nash KR, Lee DC, Cao C, Lin X, Reid P, Mouton PR, Morgan D, Gordon MN (2013) Diverse activation of microglia by chemokine (C–C motif) ligand 2 overexpression in brain. J Neuroinflamm 10:86

    Article  CAS  Google Scholar 

  140. Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH (2010) Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-α-dependent. Neurobiol Aging 31:175–188

    Article  CAS  PubMed  Google Scholar 

  141. Miguel-Alvarez M, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N, Lucia A (2015) Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging 32:139–147

    Article  CAS  PubMed  Google Scholar 

  142. Cuello AC (2017) Early and late CNS inflammation in Alzheimer’s disease: two extremes of a continuum? Trends Pharmacol Sci 38:956–966

    Article  CAS  PubMed  Google Scholar 

  143. Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC (2012) Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 33:1329–1342

    Article  CAS  PubMed  Google Scholar 

  144. Hanzel CE, Pichet-Binette A, Pimentel LS, Iulita MF, Allard Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35:2249–2262

    Article  CAS  PubMed  Google Scholar 

  145. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with β-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8:e60921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Baron R, Babcock AA, Nemirovsky A, Finsen B, Monsonego A (2014) Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer’s disease. Aging Cell 13:584–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Investig 117:1595–1604

    Article  CAS  PubMed  Google Scholar 

  148. Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE (2011) Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol Neurodegener 6:16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D (2001) Intrahippocampal LPS injections reduce Aβ load in APP + PS1 transgenic mice. Neurobiol Aging 22:1007–1012

    Article  CAS  PubMed  Google Scholar 

  150. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L (1997) Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer’s disease. Nature 389:603–606

    Article  CAS  PubMed  Google Scholar 

  151. Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE (2012) Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener 7:36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Chakrabarty P, Li A, Ceballos-Diaz C et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Azizi G, Mirshafiey A (2012) The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol Immunotoxicol 34:881–895

    Article  CAS  PubMed  Google Scholar 

  154. Goldeck D, Witkowski JM, Fülop T, Pawelec G (2016) Peripheral immune signatures in Alzheimer disease. Curr Alzheimer Res 13:739–749

    Article  CAS  PubMed  Google Scholar 

  155. Zheng C, Zhou XW, Wang JZ (2016) The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 5:7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Ongali B, Nicolakakis N, Lecrux C, Aboulkassim T, Rosa-Neto P, Papadopoulos P, Tong XK, Hamel E (2010) Transgenic mice overexpressing APP and transforming growth factor-β1 feature cognitive and vascular hallmarks of Alzheimer’s disease. Am J Pathol 177:3071–3080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) IL10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Malm TM, Koistinaho M, Pärepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J (2005) Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to β-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 18:134–142

    Article  CAS  PubMed  Google Scholar 

  159. Hohsfield LA, Humpel C (2015) Migration of blood cells to β-amyloid plaques in Alzheimer’s disease. Exp Gerontol 65:8–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Prokop S, Miller KR, Drost N, Handrick S, Mathur V, Luo J, Wegner A, Wyss-Coray T, Heppner FL (2015) Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease-like mice. J Exp Med 212:1811–1818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139:1265–1281

    Article  PubMed Central  PubMed  Google Scholar 

  162. Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, Neher JJ (2015) Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J Exp Med 212:1803–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, Wang S, Yuan B (2014) Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. Int Immunopharmacol 22:522–525

    Article  CAS  PubMed  Google Scholar 

  164. Xie L, Choudhury GR, Winters A, Yang SH, Jin K (2015) Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol 45:180–191

    Article  CAS  PubMed  Google Scholar 

  165. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 104:19446–19451

    Article  CAS  PubMed  Google Scholar 

  166. Ebner F, Brandt C, Thiele P, Richter D, Schliesser U, Siffrin V, Schueler J, Stubbe T, Ellinghaus A, Meisel C, Sawitzki B, Nitsch R (2013) Microglial activation milieu controls regulatory T cell responses. J Immunol 191:5594–5602

    Article  CAS  PubMed  Google Scholar 

  167. Dansokho C, Ait Ahmed D, Aid S et al (2016) Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139:1237–1251

    Article  PubMed  Google Scholar 

  168. Sutmuller RP, den Brok MH, Kramer M et al (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Investig 116:485–494

    Article  CAS  PubMed  Google Scholar 

  169. Liu S, Liu Y, Hao W et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107

    Article  CAS  PubMed  Google Scholar 

  170. Wang J, Shirota Y, Bayik D, Shirota H, Tross D, Gulley JL, Wood LV, Berzofsky JA, Klinman DM (2015) Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells. J Immunol 194:4215–4221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Wisniewski T, Goni F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M (2007) Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer’s disease model. Eur J Neurosci 26:413–416

    Article  PubMed  Google Scholar 

  173. Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, Bossu P (2016) Myeloid dendritic cells are decreased in peripheral blood of Alzheimer’s disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflamm 13:18

    Article  CAS  Google Scholar 

  174. Ethell DW, Shippy D, Cao C, Cracchiolo JR, Runfeldt M, Blake B, Arendash GW (2006) Aβ-specific T-cells reverse cognitive decline and synaptic loss in Alzheimer’s mice. Neurobiol Dis 23:351–361

    Article  CAS  PubMed  Google Scholar 

  175. Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA (2008) Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Apelt J, Schliebs R (2001) β-Amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 894:21–30

    Article  CAS  PubMed  Google Scholar 

  177. Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M, Ivashkiv LB (2009) IL-10 suppresses calcium-mediated costimulation of receptor activator NF-κB signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 183:2444–2455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N (2012) TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Huang WC, Yen FC, Shie FS, Pan CM, Shiao YJ, Yang CN, Huang FL, Sung YJ, Tsay HJ (2010) TGF-β1 blockade of microglial chemotaxis toward Aβ aggregates involves SMAD signaling and down-regulation of CCL5. J Neuroinflamm 7:28

    Article  CAS  Google Scholar 

  180. Lesne S, Docagne F, Gabriel C et al (2003) Transforming growth factor-β1 potentiates amyloid-β generation in astrocytes and in transgenic mice. J Biol Chem 278:18408–18418

    Article  CAS  PubMed  Google Scholar 

  181. Jin G, Howe PH (1997) Regulation of clusterin gene expression by transforming growth factor β. J Biol Chem 272:26620–26626

    Article  CAS  PubMed  Google Scholar 

  182. Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2009) Clusterin: a forgotten player in Alzheimer’s disease. Brain Res Rev 61:89–104

    Article  CAS  PubMed  Google Scholar 

  183. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  184. Fenn AM, Hall JC, Gensel JC, Popovich PG, Godbout JP (2014) IL-4 signaling drives a unique arginase+/IL-1β+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Rα after traumatic spinal cord injury. J Neurosci 34:8904–8917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Pepe G, Calderazzi G, De Maglie M, Villa AM, Vegeto E (2014) Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. J Neuroinflamm 11:211

    Article  CAS  Google Scholar 

  186. Terme M, Ullrich E, Aymeric L et al (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res 71:5393–5399

    Article  CAS  PubMed  Google Scholar 

  187. Nascimento DC, Melo PH, Pineros AR et al (2017) IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun 8:14919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Salminen A, Kaarniranta K (2009) Siglec receptors and hiding plaques in Alzheimer’s disease. J Mol Med (Berl) 87:697–701

    Article  CAS  Google Scholar 

  189. Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Kaya I, Brinet D, Michno W, Syvänen S, Sehlin D, Zetterberg H, Blennow K, Hanrieder J (2017) Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer’s disease mice (tgArcSwe) using MALDI imaging mass spectrometry. ACS Chem Neurosci 8:347–355

    Article  CAS  PubMed  Google Scholar 

  191. Bernardo A, Harrison FE, McCord M et al (2009) Elimination of GD3 synthase improves memory and reduces amyloid-β plaque load in transgenic mice. Neurobiol Aging 30:1777–1791

    Article  CAS  PubMed  Google Scholar 

  192. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  193. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7:56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM (2013) Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging 34:1051–1059

    Article  CAS  PubMed  Google Scholar 

  195. Wilcock DM, Hurban J, Helman AM, Sudduth TL, McCarty KL, Beckett TL, Ferrell JC, Murphy MP, Abner EL, Schmitt FA, Head E (2015) Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol Aging 36:2468–2474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2α kinase Gcn2 in check. Biochim Biophys Acta 1843:1948–1968

    Article  CAS  PubMed  Google Scholar 

  197. Rath M, Müller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Greenhalgh AD, Passos Dos Santos R, Zarruk JG, Salmon CK, Kroner A, David S (2016) Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain Behav Immun 56:61–67

    Article  CAS  PubMed  Google Scholar 

  199. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35:1992–2003

    Article  CAS  PubMed  Google Scholar 

  200. Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, Jansen M, Vitek MP, Gunn MD, Colton CA (2015) Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci 35:5969–5982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ (2013) Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 8:e59749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S (2015) Complexity and challenges in defining myeloid-derived suppressor cells. Cytom B Clin Cytom 88:77–91

    Article  CAS  Google Scholar 

  203. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  PubMed  Google Scholar 

  204. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R, Mancuso R, Clerici M (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30:198–209

    Article  CAS  PubMed  Google Scholar 

  206. Johansson JU, Woodling NS, Wang Q, Panchal M, Liang X, Trueba-Saiz A, Brown HD, Mhatre SD, Loui T, Andreasson KI (2015) Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models. J Clin Investig 125:350–364

    Article  PubMed  Google Scholar 

  207. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25:10180–10187

    Article  CAS  PubMed  Google Scholar 

  208. Kaur J, Sanyal SN (2011) Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol Carcinog 50:707–718

    Article  CAS  PubMed  Google Scholar 

  209. Futagami S, Hamamoto T, Shimpuku M, Nagoya H, Kawagoe T, Horie A, Shindo T, Gudis K, Sakamoto C (2010) Celecoxib inhibits CD133-positive cell migration via reduction of CCR2 in Helicobacter pylori-infected Mongolian gerbils. Digestion 81:193–203

    Article  CAS  PubMed  Google Scholar 

  210. Wozniak MA, Mee AP, Itzhaki RF (2009) Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 217:131–138

    Article  CAS  PubMed  Google Scholar 

  211. Agostini S, Clerici M, Mancuso R (2014) How plausible is a link between HSV-1 infection and Alzheimer’s disease? Expert Rev Antiinfect Ther 12:275–278

    Article  CAS  Google Scholar 

  212. Itzhaki RF (2016) Herpes and Alzheimer’s disease: subversion in the central nervous system and how it might be halted. J Alzheimers Dis 54:1273–1281

    Article  CAS  PubMed  Google Scholar 

  213. Costa AS, Agostini S, Guerini FR, Mancuso R, Zanzottera M, Ripamonti E, Racca V, Nemni R, Clerici M (2017) Modulation of immune responses to herpes simplex virus type 1 by IFNL3 and IRF7 polymorphisms: a study in Alzheimer’s disease. J Alzheimers Dis 60:1055–1063

    Article  CAS  PubMed  Google Scholar 

  214. Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF (2008) Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One 3:e3637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Wang C, Zhang N, Qi L et al (2017) Myeloid-derived suppressor cells inhibit T follicular helper cell immune response in Japanese encephalitis virus infection. J Immunol 199:3094–3105

    Article  CAS  PubMed  Google Scholar 

  216. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  217. Salminen A, Kauppinen A, Kaarniranta K (2017) Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem 140:536–549

    Article  CAS  PubMed  Google Scholar 

  218. Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E, Jendrossek V (2017) Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting Treg activity. Cell Physiol Biochem 41:1271–1284

    Article  CAS  PubMed  Google Scholar 

  219. Zhang H, Ye YL, Li MX et al (2017) CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36:2095–2104

    Article  CAS  PubMed  Google Scholar 

  220. Popp J, Bacher M, Kölsch H, Noelker C, Deuster O, Dodel R, Jessen F (2009) Macrophage migration inhibitory factor in mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res 43:749–753

    Article  PubMed  Google Scholar 

  221. Pösel C, Möller K, Boltze J, Wagner DC, Weise G (2016) Isolation and flow cytometric analysis of immune cells from the ischemic mouse brain. J Vis Exp 108:53658

    Google Scholar 

  222. Liu Y, Kosaka A, Ikeura M, Kohanbash G, Fellows-Mayle W, Snyder LA, Okada H (2013) Premetastatic soil and prevention of breast cancer brain metastasis. Neurooncology 15:891–903

    Google Scholar 

  223. Trellakis S, Bruderek K, Hütte J, Elian M, Hoffmann TK, Lang S, Brandau S (2013) Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 19:328–336

    Article  CAS  PubMed  Google Scholar 

  224. Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, Kumar P, Gabrilovich DI (2017) Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin Cancer Res 23:2942–2950

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Grants from the Terveyden Tutkimuksen Toimikunta of Academy of Finland (AK297267, AK307341, and KK296840), the Kuopio University Hospital VTR Grant (KK5503743), the Emil Aaltonen Foundation, the Finnish Cultural Foundation, and the Finnish Eye Foundation. The authors thank Dr. Ewen MacDonald for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antero Salminen.

Ethics declarations

Conflict of interest

The authors state that there are no personal or institutional conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salminen, A., Kaarniranta, K. & Kauppinen, A. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease. Cell. Mol. Life Sci. 75, 3099–3120 (2018). https://doi.org/10.1007/s00018-018-2844-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2844-6

Keywords

Navigation