Skip to main content

Advertisement

Log in

Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.02.020

    Article  PubMed  Google Scholar 

  4. Hinz B (2016) Myofibroblasts. Exp Eye Res 142:56–70

    Article  CAS  PubMed  Google Scholar 

  5. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5:167sr1

    Article  CAS  PubMed  Google Scholar 

  6. Darby IA, Laverdet B, Bonté F, Desmoulière A (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301

    PubMed  PubMed Central  Google Scholar 

  7. Klingberg F et al (2014) Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 207:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Froese AR et al (2016) Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194:84–96

    Article  CAS  PubMed  Google Scholar 

  9. Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klingberg F et al (2018) The ED-A domain enhances the capacity of fibronectin to store latent TGF-β binding protein-1 in the fibroblast matrix. J Cell Sci. https://doi.org/10.1242/jcs.201293

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klingberg F et al (2018) The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J Cell Sci 131:jcs201293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  CAS  PubMed  Google Scholar 

  14. Patel PD, Pontrello C, Burke S (2004) Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol Psychiatry 55:428–433

    Article  CAS  PubMed  Google Scholar 

  15. Côté F et al (2003) Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci 100:13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci Basic Clin 153:47–57

    Article  CAS  Google Scholar 

  18. Imai S-I (2009) The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Badawy AA-B (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35:e00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfefferkorn ER, Eckel M, Rebhun S (1986) Interferon-γ suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol Biochem Parasitol 20:215–224

    Article  CAS  PubMed  Google Scholar 

  21. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  PubMed  Google Scholar 

  22. Badawy AA-B, Namboodiri AM, Moffett JR (2016) The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin Sci 130:1327–1333

    Article  CAS  Google Scholar 

  23. Roman AC et al (2018) The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 185:50–63

    Article  CAS  PubMed  Google Scholar 

  24. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR (2011) Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genom 12:365

    Article  CAS  Google Scholar 

  25. Nguyen LP, Bradfield CA (2007) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flaveny CA, Murray IA, Perdew GH (2009) Differential gene regulation by the human and mouse aryl hydrocarbon receptor. Toxicol Sci 114:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flaveny C, Reen RK, Kusnadi A, Perdew GH (2008) The mouse and human Ah receptor differ in recognition of LXXLL motifs. Arch Biochem Biophys 471:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beischlag TV et al (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukar Gene Expr 18(3):207–250

    Article  CAS  Google Scholar 

  29. Opitz CA et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Article  CAS  PubMed  Google Scholar 

  30. DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, Omiecinski CJ, Perdew GH (2010) Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci 115:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106

    Article  CAS  PubMed  Google Scholar 

  32. Henry E, Bemis J, Henry O, Kende A, Gasiewicz T (2006) A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo. Arch Biochem Biophys 450:67–77

    Article  CAS  PubMed  Google Scholar 

  33. Lowe MM et al (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 9:e87877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poormasjedi-Meibod M-SS, Hartwell R, Kilani RT, Ghahary A (2014) Anti-scarring properties of different tryptophan derivatives. PloS one 9:e91955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poormasjedi-Meibod MS, Salimi Elizei S, Leung V, Baradar Jalili R, Ko F, Ghahary A (2016) Kynurenine modulates MMP-1 and type-I collagen expression via aryl hydrocarbon receptor activation in dermal fibroblasts. J Cell Physiol 231:2749–2760

    Article  CAS  PubMed  Google Scholar 

  36. Poormasjedi-Meibod MS, Pakyari M, Jackson JK, Salimi Elizei S, Ghahary A (2016) Development of a nanofibrous wound dressing with an antifibrogenic properties in vitro and in vivo model. J Biomed Mater Res Part A 104:2334–2344

    Article  CAS  Google Scholar 

  37. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  PubMed  Google Scholar 

  38. Parrott J, Redus L, Santana-Coelho D, Morales J, Gao X, O’connor J (2016) Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry 6:e918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meier TB et al (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48

    Article  CAS  PubMed  Google Scholar 

  40. Birner A et al (2017) Increased breakdown of kynurenine towards its neurotoxic branch in bipolar disorder. PLoS One 12:e0172699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovelace MD et al (2016) Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front Immunol 7:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chavez-Munoz C et al (2012) Application of an Indoleamine 2, 3-dioxygenase–expressing skin substitute improves scar formation in a fibrotic animal model. J Investig Dermatol 132:1501–1505

    Article  CAS  PubMed  Google Scholar 

  43. Hartwell R, Poormasjedi-Meibod MS, Chavez-Munoz C, Jalili RB, Hossenini-Tabatabaei A, Ghahary A (2015) An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model. Tissue Eng Part A. 18(21):1085–1094

    Article  CAS  Google Scholar 

  44. Liu H, Liu L, Fletcher BS, Visner GA (2006) Sleeping beauty-based gene therapy with indoleamine 2, 3-dioxygenase inhibits lung allograft fibrosis. FASEB J 20:2384–2386

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A (2014) Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Investig Dermatol 134:643–650

    Article  CAS  PubMed  Google Scholar 

  46. Yu H et al (2014) The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol Appl Pharmacol 280:502–510

    Article  CAS  PubMed  Google Scholar 

  47. Ye M et al (2018) Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non-small cell lung cancer by activating src-mediated bypass signaling. Clin Cancer Res 24:1227–1239

    Article  CAS  PubMed  Google Scholar 

  48. Borlak J, Jenke HS (2008) Cross-talk between aryl hydrocarbon receptor and mitogen-activated protein kinase signaling pathway in liver cancer through c-raf transcriptional regulation. Mol Cancer Res 6:1326–1336

    Article  CAS  PubMed  Google Scholar 

  49. Aguilera-Montilla N et al (2013) Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood 121:e108–e117

    Article  CAS  PubMed  Google Scholar 

  50. Li D et al (2012) Effects of indoleamine 2, 3-dioxygenases in carbon tetrachloride-induced hepatitis model of rats. Cell Biochem Funct 30:309–314

    Article  CAS  PubMed  Google Scholar 

  51. Ogiso H et al (2016) The deficiency of indoleamine 2, 3-dioxygenase aggravates the CCl4-induced liver fibrosis in mice. PLoS One 11:e0162183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giri SN, Hyde DM, Marafino BJ Jr (1986) Ameliorating effect of murine interferon gamma on bleomycin-induced lung collagen fibrosis in mice. Biochem Med Metab Biol 36:194–197

    Article  CAS  PubMed  Google Scholar 

  53. Gurujeyalakshmi G, Giri S (1995) Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Exp Lung Res 21:791–808

    Article  CAS  PubMed  Google Scholar 

  54. Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, Benedetti A (1996) Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23:1189–1199

    Article  CAS  PubMed  Google Scholar 

  55. Weng HL, Cai WM, Liu RH (2001) Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lupher ML Jr, Gallatin WM (2006) Regulation of fibrosis by the immune system. Adv Immunol 89:245–288

    Article  CAS  PubMed  Google Scholar 

  57. Young HA, Hardy KJ (1995) Role of interferon-γ in immune cell regulation. J Leukoc Biol 58:373–381

    Article  CAS  PubMed  Google Scholar 

  58. Low S, Kitada S, Lee D (1991) Interferon-gamma inhibits collagen synthesis by human Tenon’s capsule fibroblasts in vitro. Investig Ophthalmol Vis Sci 32:2964–2969

    CAS  Google Scholar 

  59. Clark JG, Dedon T, Wayner E, Carter W (1989) Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts. J Clin Investig 83:1505–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghosh AK, Bhattacharyya S, Mori Y, Varga J (2006) Inhibition of collagen gene expression by interferon-γ: novel role of the CCAAT/enhancer binding protein β (C/EBPβ). J Cell Physiol 207:251–260

    Article  CAS  PubMed  Google Scholar 

  61. Eickelberg O et al (2001) Molecular mechanisms of TGF-β antagonism by interferon γ and cyclosporine A in lung fibroblasts. FASEB J 15:797–806

    Article  CAS  PubMed  Google Scholar 

  62. Ulloa L, Doody J, Massagué J (1999) Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397:710

    Article  CAS  PubMed  Google Scholar 

  63. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 11:1223–1230

    CAS  Google Scholar 

  64. Rezzonico R, Burger D, Dayer J-M (1998) Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. J Biol Chem 273:18720–18728

    Article  CAS  PubMed  Google Scholar 

  65. Dai W, Gupta SL (1990) Regulation of indoleamine 2, 3-dioxygenase gene expression in human fibroblasts by interferon-gamma Upstream control region discriminates between interferon. J Biol Chem 265:19871–19877

    CAS  PubMed  Google Scholar 

  66. Yadav MC, Burudi E, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-γ-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55:1385–1396

    Article  PubMed  PubMed Central  Google Scholar 

  67. Malone D, Dolan P, Brown R, Kalayoglu M, Arend R, Byrne G, Ozaki Y (1994) Interferon gamma induced production of indoleamine 2, 3 dioxygenase in cultured human synovial cells. J Rheumatol 21:1011–1019

    CAS  PubMed  Google Scholar 

  68. MacKenzie C et al (1999) Cytokine mediated regulation of interferon-gamma-induced IDO activation. Tryptophan, serotonin, and melatonin. Springer, Boston, MA, pp 533–539

    Google Scholar 

  69. Jung ID, Lee C-M, Jeong Y-I, Lee JS, Park WS, Han J, Park Y-M (2007) Differential regulation of indoleamine 2, 3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 581:1449–1456

    Article  CAS  PubMed  Google Scholar 

  70. Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, Davidson HW, Hutton JC (2007) Induction of indoleamine 2, 3-dioxygenase by interferon-γ in human islets. Diabetes 56:72–79

    Article  CAS  PubMed  Google Scholar 

  71. Mittal D et al (2013) Indoleamine 2, 3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Investig Dermatol 133:2686–2694

    Article  CAS  PubMed  Google Scholar 

  72. Sarkhosh K, Tredget EE, Karami A, Uludag H, Iwashina T, Kilani RT, Ghahary A (2003) Immune cell proliferation is suppressed by the interferon-γ-induced indoleamine 2, 3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG). J Cell Biochem 90:206–217

    Article  CAS  PubMed  Google Scholar 

  73. Ghahary A, Li Y, Tredget EE, Kilani RT, Iwashina T, Karami A, Lin X (2004) Expression of indoleamine 2, 3-dioxygenase in dermal fibroblasts functions as a local immunosuppressive factor. J Investig Dermatol 122:953–964

    Article  PubMed  Google Scholar 

  74. Li Y, Tredget EE, Ghaffari A, Lin X, Kilani RT, Ghahary A (2006) Local expression of indoleamine 2, 3-dioxygenase protects engraftment of xenogeneic skin substitute. J Investig Dermatol 126:128–136

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez-Salguero P et al (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726

    Article  CAS  PubMed  Google Scholar 

  76. Peterson TC, Hodgson P, Fernandez-Salguero P, Neumeister M, Gonzalez FJ (2000) Hepatic fibrosis and cytochrome P450: experimental models of fibrosis compared to AHR knockout mice. Hepatol Res 17:112–125

    Article  CAS  PubMed  Google Scholar 

  77. Corchero J, Martín-Partido G, Dallas SL, Fernández-Salguero PM (2004) Liver portal fibrosis in dioxin receptor-null mice that overexpress the latent transforming growth factor-β-binding protein-1. Int J Exp Pathol 85:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hemsworth-Peterson T (2013) Role of JNK signalling and ahr in fibrosis, implications for new therapeutics. Pancreat Disord Ther 3:2

    Article  Google Scholar 

  79. Monteleone I et al (2016) Aryl hydrocarbon receptor-driven signals inhibit collagen synthesis in the gut. Eur J Immunol 46:1047–1057

    Article  CAS  PubMed  Google Scholar 

  80. Woeller CF, Roztocil E, Hammond CL, Feldon SE, Phipps RP (2016) The aryl hydrocarbon receptor and its ligands inhibit myofibroblast formation and activation: implications for thyroid eye disease. Am J Pathol 186:3189–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lehmann GM et al (2011) The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation. Am J Pathol 178:1556–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murai M, Tsuji G, Hashimoto-Hachiya A, Kawakami Y, Furue M, Mitoma C (2018) An endogenous tryptophan photo-product, FICZ, is potentially involved in photo-aging by reducing TGF-β-regulated collagen homeostasis. J Dermatol Sci 89:19–26

    Article  CAS  PubMed  Google Scholar 

  83. Wrighton KH, Lin X, Feng X-H (2009) Phospho-control of TGF-β superfamily signaling. Cell Res 19:8

    Article  CAS  PubMed  Google Scholar 

  84. Wang G, Matsuura I, He D, Liu F (2009) Transforming growth factor-β-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hough C, Radu M, Doré JJ (2012) Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One 7:e42513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hayashida T, Decaestecker M, Schnaper HW (2003) Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 17:1576–1578

    Article  CAS  PubMed  Google Scholar 

  87. Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 274:37413–37420

    Article  CAS  PubMed  Google Scholar 

  88. Mori S et al (2004) TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 23:7416

    Article  CAS  PubMed  Google Scholar 

  89. Alarcón C et al (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kamaraju AK, Roberts AB (2005) Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 280:1024–1036

    Article  CAS  PubMed  Google Scholar 

  91. Rostam MA, Kamato D, Piva TJ, Zheng W, Little PJ, Osman N (2016) The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 28:956–966

    Article  CAS  PubMed  Google Scholar 

  92. Nishida M, Okumura Y, Sato H, Hamaoka K (2008) Delayed inhibition of p38 mitogen-activated protein kinase ameliorates renal fibrosis in obstructive nephropathy. Nephrol Dial Transplant 23:2520–2524

    Article  CAS  PubMed  Google Scholar 

  93. Stambe C, Atkins RC, Tesch GH, Masaki T, Schreiner GF, Nikolic-Paterson DJ (2004) The role of p38α mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol 15:370–379

    Article  CAS  PubMed  Google Scholar 

  94. Akhmetshina A et al (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735

    Article  CAS  PubMed  Google Scholar 

  95. Xu L et al (2017) Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med 21:1545–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baarsma HA et al (2011) Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β1 is increased in chronic obstructive pulmonary disease. PLoS One 6:e25450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ihn H, Yamane K, Tamaki K (2005) Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Gen Intern Med 20:247–255

    Google Scholar 

  98. Dolivo D, Larson S, Dominko T (2017) FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 88:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Molkentin JD et al (2017) Fibroblast-specific genetic manipulation of p38 MAPK in vivo reveals its central regulatory role in fibrosis. Circulation CIRCULATIONAHA 116:026238

    Google Scholar 

  100. Choi SY et al (2016) Piceatannol attenuates renal fibrosis induced by unilateral ureteral obstruction via downregulation of histone deacetylase 4/5 or p38-MAPK signaling. PLoS One 11:e0167340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sugiyama N, Kohno M, Yokoyama T (2011) Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrol Dial Transplant 27(4):1351–1358

    Article  CAS  PubMed  Google Scholar 

  102. See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44:1679–1689

    Article  CAS  PubMed  Google Scholar 

  103. Matysik-Woźniak A, Paduch R, Turski WA, Maciejewski R, Jünemann AG, Rejdak R (2017) Effects of tryptophan, kynurenine and kynurenic acid exerted on human reconstructed corneal epithelium in vitro. Pharmacol Rep 69:722–729

    Article  CAS  PubMed  Google Scholar 

  104. Morita T et al (1999) l-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions, tryptophan, serotonin, and melatonin. Springer, Boston, MA, pp 559–563

    Google Scholar 

  105. Poormasjedi-Meibod M-S, Jalili RB, Hosseini-Tabatabaei A, Hartwell R, Ghahary A (2013) Immuno-regulatory function of indoleamine 2, 3 dioxygenase through modulation of innate immune responses. PLoS One 8:e71044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fallarino F et al (2003) T cell apoptosis by kynurenines. Developments in tryptophan and serotonin metabolism. Springer, Boston, MA, pp 183–190

    Book  Google Scholar 

  107. Dagenais-Lussier X, Aounallah M, Mehraj V, El-Far M, Tremblay C, Sekaly R-P, Routy J-P, Van Grevenynghe J (2016) Kynurenine reduces memory CD4 T-cell survival by interfering with interleukin-2 signaling early during HIV-1 infection. J Virol 90:7967–7979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Belladonna ML et al (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137

    Article  CAS  PubMed  Google Scholar 

  109. Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase–expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Morita T et al (2001) 3-Hydroxyanthranilic acid, an l-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-γ. Ann Clin Biochem 38:242–251

    Article  CAS  PubMed  Google Scholar 

  111. Khalil N, Corne S, Whitman C, Yacyshyn H (1996) Plasmin regulates the activation of cell-associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am J Respir Cell Mol Biol 15:252–259

    Article  CAS  PubMed  Google Scholar 

  112. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig 101:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19–28

    Article  CAS  PubMed  Google Scholar 

  114. Duffield JS et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Investig 115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wynn TA (2004) Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol 4:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mann DA, Oakley F (2013) Serotonin paracrine signaling in tissue fibrosis. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1832:905–910

    Article  CAS  Google Scholar 

  117. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD (2006) 5-Hydroxytryptamine induces mast cell adhesion and migration. J Immunol 177:6422–6432

    Article  CAS  PubMed  Google Scholar 

  118. Boehme SA, Lio FM, Sikora L, Pandit TS, Lavrador K, Rao SP, Sriramarao P (2004) Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol 173:3599–3603

    Article  CAS  PubMed  Google Scholar 

  119. Li N, Ghia J-E, Wang H, McClemens J, Cote F, Suehiro Y, Mallet J, Khan WI (2011) Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol 178:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Müller T et al (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Idzko M et al (2004) The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol 172:6011–6019

    Article  CAS  PubMed  Google Scholar 

  122. Soga F, Katoh N, Inoue T, Kishimoto S (2007) Serotonin activates human monocytes and prevents apoptosis. J Investig Dermatol 127:1947–1955

    Article  CAS  PubMed  Google Scholar 

  123. Dürk T et al (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17:599–606

    Article  CAS  PubMed  Google Scholar 

  124. Rosenberg T, Lattimer R, Montgomery P, Wiens C, Levy L (2017) The relationship of ssrI and snrI usage with interstitial lung disease and bronchiectasis in an elderly population: a case–control study. Clin Interv Aging 12:1977

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thornton C, Maher TM, Hansell D, Nicholson AG, Wells AU (2009) Pulmonary fibrosis associated with psychotropic drug therapy: a case report. J Med Case Rep 3:126

    Article  PubMed  PubMed Central  Google Scholar 

  126. Beretta L, Cossu M, Marchini M, Cappiello F, Artoni A, Motta G, Scorza R (2008) A polymorphism in the human serotonin 5-HT 2A receptor gene may protect against systemic sclerosis by reducing platelet aggregation. Arthritis Res Ther 10:R103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beretta L, Scorza R (2009) 5HT 2A polymorphism His452Tyr in a German Caucasian systemic sclerosis population–authors’ response. Arthritis Res Ther 11:404

    Article  PubMed Central  Google Scholar 

  128. Kirsten H, Burkhardt J, Hantmann H, Hunzelmann N, Vaith P, Ahnert P, Melchers I (2009) 5HT 2A polymorphism His452Tyr in a German Caucasian systemic sclerosis population. Arthritis Res Ther 11:403

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 66:1293–1300

    CAS  PubMed  Google Scholar 

  130. Asselin J, Gibbins JM, Achison M, Lee YH, Morton LF, Farndale RW, Barnes MJ, Watson SP (1997) A collagen-like peptide stimulates tyrosine phosphorylation of syk and phospholipase Cγ2 in platelets independent of the integrin α2β1. Blood 89:1235–1242

    CAS  PubMed  Google Scholar 

  131. Blake RA, Schieven GL, Watson SP (1994) Collagen stimulates tyrosine phosphorylation of phospholipase C-γ2 but not phospholipase C-γ1 in human platelets. FEBS Lett 353:212–216

    Article  CAS  PubMed  Google Scholar 

  132. Mackenzie LS, Lymn JS, Hughes AD (2013) Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1833:3006–3012

    Article  CAS  Google Scholar 

  133. Zhu X et al (2017) Phospholipase Cε deficiency delays the early stage of cutaneous wound healing and attenuates scar formation in mice. Biochem Biophys Res Commun 484:144–151

    Article  CAS  PubMed  Google Scholar 

  134. Mekontso-Dessap A et al (2006) Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation 113:81–89

    Article  CAS  PubMed  Google Scholar 

  135. Gustafsson BI et al (2005) Long-term serotonin administration induces heart valve disease in rats. Circulation 111:1517–1522

    Article  CAS  PubMed  Google Scholar 

  136. Dees C et al (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 208:961–972 (jem. 20101629)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Königshoff M et al (2010) Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax thx. 2009:134353

    Google Scholar 

  138. Janssen W et al (2015) 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. BioMed Res Int 2015:1–8

    Google Scholar 

  139. Elaidy SM, Essawy SS (2016) The antifibrotic effects of alveolar macrophages 5-HT2C receptors blockade on bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 68:1244–1253

    Article  CAS  PubMed  Google Scholar 

  140. Tawfik MK, Makary S (2017) 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: comparison to terguride. Eur J Pharmacol 814:114–123

    Article  CAS  PubMed  Google Scholar 

  141. Löfdahl A et al (2016) 5‐HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep 4

  142. Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay J-M, Maroteaux L, Monassier L (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by ventricular fibroblasts. Circulation 110:969–974

    Article  CAS  PubMed  Google Scholar 

  143. Frey N, Olson E (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  PubMed  Google Scholar 

  144. Jaffré F et al (2009) Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 104:113–123

    Article  CAS  PubMed  Google Scholar 

  145. Ruddell RG, Oakley F, Hussain Z, Yeung I, Bryan-Lluka LJ, Ramm GA, Mann DA (2006) A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol 169:861–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yabanoglu S, Akkiki M, Seguelas M-H, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46:518–525

    Article  CAS  PubMed  Google Scholar 

  147. Chen C et al (2014) Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors. Mol Cell Biochem 397:267–276

    Article  CAS  PubMed  Google Scholar 

  148. Moreno AC, Clara RO, Coimbra JB, Júlio AR (2013) The expanding roles of 1-methyl-tryptophan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells. FEBS J 280(19):4782–4792

    Article  CAS  PubMed  Google Scholar 

  149. Li Y, Hu N, Yang D, Oxenkrug G, Yang Q (2017) Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J 284:948–966

    Article  CAS  PubMed  Google Scholar 

  150. Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003) Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196:144–153

    Article  CAS  PubMed  Google Scholar 

  151. Slominski A et al (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J 16:896–898

    Article  CAS  PubMed  Google Scholar 

  152. Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N (2015) Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 116:903–922

    Article  CAS  PubMed  Google Scholar 

  153. Sheipouri D, Braidy N, Guillemin GJ (2012) Kynurenine pathway in skin cells: Implications for UV-induced skin damage. Int J Tryptophan Res 5:IJTR. S9835

    Article  CAS  Google Scholar 

  154. Papp A, Hartwell R, Evans M, Ghahary A (2018) The safety and tolerability of topically delivered kynurenic acid in humans. A phase 1 randomized double-blind clinical trial. J Pharm Sci 107:1572–1576

    Article  CAS  PubMed  Google Scholar 

  155. BirchBioMed (2018) Birchbiomed is cleared to begin first-of-its-kind phase II clinical trial for ground-breaking anti-scarring drug. In: Elliott S (eds) BirchBioMed, Vancouver, BC, pp 1–3

  156. Eickelberg O, Pansky A, Mussmann R, Bihl M, Tamm M, Hildebrand P, Perruchoud AP, Roth M (1999) Transforming growth factor-β1 induces interleukin-6 expression via activating protein-1 consisting of JunD homodimers in primary human lung fibroblasts. J Biol Chem 274:12933–12938

    Article  CAS  PubMed  Google Scholar 

  157. Yao Z et al (2010) TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci 107:15535–15540

    Article  PubMed  PubMed Central  Google Scholar 

  158. Elias J, Lentz V, Cummings P (1991) Transforming growth factor-beta regulation of IL-6 production by unstimulated and IL-1-stimulated human fibroblasts. J Immunol 146:3437–3443

    CAS  PubMed  Google Scholar 

  159. Seong GJ, Hong S, Jung S-A, Lee J-J, Lim E, Kim S-J, Lee JH (2009) TGF-β-induced interleukin-6 participates in transdifferentiation of human Tenon’s fibroblasts to myofibroblasts. Mol Vis 15:2123

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by a National Institutes of Health Award (NIH R01GM85456) to Tanja Dominko and a National Science Foundation Integrative Graduate Education and Research Traineeship (Grant number DGE 1144804) awarded to David Dolivo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Dominko.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolivo, D.M., Larson, S.A. & Dominko, T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell. Mol. Life Sci. 75, 3663–3681 (2018). https://doi.org/10.1007/s00018-018-2880-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2880-2

Keywords

Navigation