Skip to main content

Advertisement

Log in

Computational investigation of oseltamivir resistance in influenza A (H5N1) virus

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Oseltamivir is the most effective antiviral drug used for the treatment and prevention of influenza A infections. Neuraminidase is the principal target for treating patients with H5N1 infection. Until recently, only a low prevalence of neuraminidase inhibitors (NAIs) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of influenza A (H5N1) strains with a H274Y neuraminidase mutation that was highly resistant to the NAI, oseltamivir. In this study, we used molecular docking and molecular dynamics (MD) approach to characterize the effect of H274Y mutation in drug–target interactions. Docking results suggest that oseltamivir was found to adopt the most promising conformations to the wild type NA (WT) by identifying the guanidinium side chain of R-156 and R-152 as a prospective partner for making polar contacts as compared to the mutant type NA. The MD results showed that the average atom, especially atoms of the wild type NA–oseltamivir complex, movements were small, displayed fast convergence of energy and charges in geometry. This highlights the stable binding of the oseltamivir with wild type NA as compared to mutant type NA. Overall, our study may be helpful for the rational design of more powerful, selective, and more robust NAI against drug-resistant H274Y mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bauer K, Richter M, Wutzler P, Schmidtke M (2009) Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/06. Antiviral Res 82:34–41

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bucher DJ, Kilbourne ED (1972) A 2 (N2) neuraminidase of the X-7 influenza virus recombinant: determination of molecular size and subunit composition of the active unit. J Virol 10:60–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57:213–218

    CAS  PubMed  Google Scholar 

  • Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453:1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7:55–60

    Article  Google Scholar 

  • de Jong MD, Tran TT, Truong HK, Vo MH, Smith GJ, Nguyen VC, Bach VC, Phan TQ, Do QH, Guan Y, Peiris JS, Tran TH, Farrar J (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353:2667–2672

    Article  PubMed  Google Scholar 

  • Du QS, Wang SQ, Chou KC (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354:634–640

    Article  PubMed  Google Scholar 

  • Feldman J, Snyder KA, Ticoll A, Pintilie G, Hogue CW (2006) A complete small molecule dataset from the protein data bank. FEBS Lett 580:1649–1653

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Method 3:537–547

    Article  CAS  Google Scholar 

  • Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355:827–835

    Article  CAS  PubMed  Google Scholar 

  • Han N, Liu X, Mu Y (2012) Exploring the mechanism of zanamivir resistance in a neuraminidase mutant: a molecular dynamics study. PLoS ONE 7:e44057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hinkle A, Tobacman LS (2003) Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem 278:506–513

    Article  CAS  PubMed  Google Scholar 

  • Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119:681–690

    Article  CAS  PubMed  Google Scholar 

  • Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson J (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16:1399–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, Nguyen KH, Pham ND, Ngyen HH, Yamada S, Muramoto Y, Horimoto T, Takada A, Goto H, Suzuki T, Suzuki Y, Kawaoka Y (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437:1108

    Article  CAS  PubMed  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Lopez G, Valencia A, Tress ML (2007) firestar–prediction of functionally important residue using structural templates and alignment reliability. Nucleic Acids Res 35:573–577

    Article  Google Scholar 

  • Matsuzaki Y, Mizuta K, Aoki Y, Suto A, Abiko C, Sanjoh K, Matsuzaki Y, Mizuta K, Aoki Y, Suto A, Abiko C, Sanjoh K (2010) A two-year survey of the oseltamivir-resistant influenza A(H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir and zanamivir. Virol J 7:53

    Article  PubMed Central  PubMed  Google Scholar 

  • McKimm-Breschkin JL (2000) Resistance of influenza viruses to neuraminidase inhibitors—a review. Antiviral Res 47:1–17

    Article  CAS  PubMed  Google Scholar 

  • Meagher KL, Carlson HA (2005) Solvation influences flap collapse in HIV-1 protease. Proteins 58:119–125

    Article  CAS  PubMed  Google Scholar 

  • Mishin VP, Hayden FG, Gubareva LV (2005) Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob Agents Chemother 49:4515–4520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitrasinovic PM (2009) On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys Chem 140:35–38

    Article  CAS  PubMed  Google Scholar 

  • Moscona A (2005) Global transmission of oseltamivir-resistant influenza. N Engl J Med 360:953–956

    Article  Google Scholar 

  • Mukhtar MM, Rasool ST, Song D, Zhu C, Hao Q, Zhu Y, Wu J (2007) Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. J Gen Virol 88:3094–3099

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oda A, Okayasu M, Kamiyama Y, Yoshida T, Takahashi O, Matsuzaki H (2007) Evaluation of docking accuracy and investigation of roles of parameters and each term in scoring functions for protein-ligand docking using ArgusLab software. Bull Chem Soc Jpn 80:1920–1925

    Article  CAS  Google Scholar 

  • Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38:2681–2691

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Murthy MR (2000) Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng 13:9–13

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran R, George Priya Doss C, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R (2008) Effect of deleterious nsSNP on the HER2 receptor based on stability and binding affinity with herceptin: a computational approach. C R Biol 331:409–417

    Article  CAS  PubMed  Google Scholar 

  • Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433

    Article  CAS  PubMed  Google Scholar 

  • Rungrotmongkol T, Udommaneethanakit T, Malaisree M, Nunthaboot N, Intharathep P, Sompornpisut P, Hannongbua S (2009) How does each substituent functional group of oseltamivir lose its activity against virulent H5N1 influenza mutants? Biophys Chem 145(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49

    Article  CAS  PubMed  Google Scholar 

  • Schuttelkopf AW, Van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr 60:1355–1363

    Google Scholar 

  • Shirvan AN, Moradi M, Aminian M, Madani R (2007) Preparation of neuraminidase-specific antiserum from the H9N2 subtype of avian influenza virus turk. Turk J Vet Animal Sci 31:219–223

    CAS  Google Scholar 

  • Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids 32:610–614

    Article  Google Scholar 

  • Takeda M, Leser GP, Russell CJ, Lamb RA (2003) Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci 100:14610–14617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson MA (2004) ArgusLab 4.0.1. Planaria Software. LLC, Seattle. http://www.ArgusLab.com

  • Thompson MA (2004b) Poster presentation: molecular docking using arguslab: an efficient shape-based search algorithm and the Ascore scoring function. Fall ACS meeting, Philadelphia

    Google Scholar 

  • Von Itzstein M, Wu WY, Kok BG, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Article  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wade RC (2001) Comparative binding energy (COMBINE) analysis of influenza neuraminidase–inhibitor complexes. J Med Chem 44:961–971

    Article  CAS  PubMed  Google Scholar 

  • Wang NX, Zheng JJ (2009) Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci 18:707–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward P, Small I, Smith J, Suter P, Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 55:i5–i21

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins 58:905–912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express a deep sense of gratitude to the management of Vellore Institute of Technology for all the support, assistance, and constant encouragements to carry out this work. The authors also thank Professor M.A. Mohamed Sahul Hameed, English division, for English editing and grammar corrections and the reviewers for giving useful suggestions and comments in the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthick, V., Ramanathan, K. Computational investigation of oseltamivir resistance in influenza A (H5N1) virus. Med Chem Res 22, 5764–5771 (2013). https://doi.org/10.1007/s00044-013-0551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0551-2

Keywords

Navigation